

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 ![collection version](https://img.shields.io/github/v/release/aristanetworks/ansible-cvp) ![License](https://img.shields.io/github/license/aristanetworks/ansible-cvp)

Ansible Modules for Arista CloudVision Platform

> All the CV communication are now managed by [__cvprac library__](https://github.com/aristanetworks/cvprac). So a new [requirements](#dependencies) __MUST__ be installed first before any code execution.

<!– @import “[TOC]” {cmd=”toc” depthFrom=1 depthTo=6 orderedList=false} –>

<!– code_chunk_output –>

	[Ansible Modules for Arista CloudVision Platform](#ansible-modules-for-arista-cloudvision-platform)
- [About](#about)
- [List of CVP versions supported](#list-of-cvp-versions-supported)
- [Collection overview](#collection-overview)

	[List of available modules](#list-of-available-modules)

	[List of available roles](#list-of-available-roles)

	[Example](#example)

	[Installation](#installation)
- [Dependencies](#dependencies)
- [Installation from ansible-galaxy](#installation-from-ansible-galaxy)
- [Git installation as source of collection](#git-installation-as-source-of-collection)
- [Docker for testing](#docker-for-testing)

	[Resources](#resources)

	[Ask a question](#ask-a-question)

	[Branching Model](#branching-model)

	[License](#license)

<!– /code_chunk_output –>

About

[Arista Networks](https://www.arista.com/) supports Ansible for managing devices running the EOS operating system through [CloudVision platform (CVP)](https://www.arista.com/en/products/eos/eos-cloudvision). This roles includes a set of ansible modules that perform specific configuration tasks on CVP server. These tasks include: collecting facts, managing configlets, containers, build provisionning topology and running tasks. For installation, you can refer to [specific section](#git-installation) of this readme.

	<p align=”center”>
	

</p>

More documentation is available in [project’s website](https://cvp.avd.sh/)

List of CVP versions supported

__arista.cvp__ collection supports list of Cloudvision version as listed below:

	__CVP 2018.x.x__: starting version [ansible-cvp 1.0.0](https://github.com/aristanetworks/ansible-cvp/releases/tag/v1.0.0)

	__CVP 2019.x.x__: starting version [ansible-cvp 1.0.0](https://github.com/aristanetworks/ansible-cvp/releases/tag/v1.0.0)

	__CVP 2020.1.x__: starting version [ansible-cvp 1.1.0](https://github.com/aristanetworks/ansible-cvp/releases/tag/v1.1.0)

	__CVP >= 2020.2.x__: starting version [ansible-cvp 2.0.0](https://github.com/aristanetworks/ansible-cvp/releases/tag/v2.0.0)

Starting version 2.0.0, collection uses [cvprac](https://github.com/aristanetworks/cvprac) as Cloudvision connection manager. So support for any new CLoudvision server is tied to it support in this python library.

Collection overview

This repository provides content for Ansible’s collection __arista.cvp__ with following content:

List of available modules

__Version 3:__

	[__arista.cvp.cv_configlet_v3__](https://cvp.avd.sh/en/latest/docs/modules/cv_configlet_v3.rst/) - Manage configlet configured on CVP.

	[__arista.cvp.cv_container_v3__](https://cvp.avd.sh/en/latest/docs/modules/cv_container_v3.rst/) - Manage container topology and attach configlet and devices to containers.

	[__arista.cvp.cv_device_v3__](https://cvp.avd.sh/en/latest/docs/modules/cv_device_v3.rst/) - Manage devices configured on CVP

	[__arista.cvp.cv_task_v3__](https://cvp.avd.sh/en/latest/docs/modules/cv_task_v3.rst/) - Run tasks created on CVP.

__Legacy / Version 1:__

	[__arista.cvp.cv_facts__](https://cvp.avd.sh/en/latest/docs/modules/cv_facts.rst/) - Collect CVP facts from server like list of containers, devices, configlet and tasks.

	[__arista.cvp.cv_configlet__](https://cvp.avd.sh/en/latest/docs/modules/cv_configlet.rst/) - Manage configlet configured on CVP.

	[__arista.cvp.cv_container__](https://cvp.avd.sh/en/latest/docs/modules/cv_container.rst/) - Manage container topology and attach configlet and devices to containers.

	[__arista.cvp.cv_device__](https://cvp.avd.sh/en/latest/docs/modules/cv_device.rst/) - Manage devices configured on CVP

	[__arista.cvp.cv_task__](https://cvp.avd.sh/en/latest/docs/modules/cv_task.rst/) - Run tasks created on CVP.

List of available roles

	[__arista.cvp.dhcp_configuration__](https://cvp.avd.sh/en/latest/roles/dhcp_configuration/) - Configure DHCPD service on a Cloudvision server or any dhcpd service.

	[__arista.cvp.configlet_sync__](https://cvp.avd.sh/en/latest/roles/configlets_sync/) - Synchronize configlets between multiple Cloudvision servers.

Example

This example outlines how to use arista.cvp to create a containers topology on Arista CloudVision.

A dedicated repository is available for step by step examples on [ansible-cvp-toi](https://github.com/arista-netdevops-community/ansible-cvp-avd-toi).

A [complete end to end demo](https://github.com/arista-netdevops-community/ansible-avd-cloudvision-demo) using [Arista Validated Design collection](https://github.com/aristanetworks/ansible-avd) and CloudVision modules is available as an example.

Another [demonstration repository](https://github.com/arista-netdevops-community/atd-avd) is available to play with Arista Test Drive. Please reach out to your favorite SE for getting access to such instance.

Below is a very basic example to build a container topology on a CloudVision platform assuming you have 3 veos named veos0{1,3} and a configlet named alias

```yaml
—
- name: Playbook to demonstrate cvp modules.


hosts: cv_server
connection: local
gather_facts: no
collections:



	arista.cvp








	vars:
	# Configlet definition
device_configuration:


mlag-01a-config: “{{lookup(‘file’, ‘./config-router-mlag01a.conf’)}}”
mlag-01b-config: “{{lookup(‘file’, ‘./config-router-mlag01b.conf’)}}”




# Container definition
containers_provision:



	Fabric:
	parentContainerName: Tenant



	Spines:
	parentContainerName: Fabric



	Leaves:
	parentContainerName: Fabric
configlets:



	alias









	MLAG01:
	parentContainerName: Leaves








# Device definition
devices_provision:



	fqdn: mlag-01a
parentContainerName: ‘MLAG01’
configlets:



	‘mlag-01a-config’







systemMacAddress: ‘50:8d:00:e3:78:aa’



	fqdn: mlag-01b
parentContainerName: ‘MLAG01’
configlets:



	‘mlag-01b-config’







systemMacAddress: ‘50:8d:00:e3:78:bb’










	tasks:
	
	name: “Build Container topology on {{inventory_hostname}}”
arista.cvp.cv_container_v3:


topology: ‘{{containers_provision}}’






	name: “Configure devices on {{inventory_hostname}}”
arista.cvp.cv_device_v3:


devices: ‘{{devices_provision}}’















```

As modules of this collection are based on [HTTPAPI connection plugin](https://docs.ansible.com/ansible/latest/plugins/httpapi.html), authentication elements shall be declared using this plugin mechanism and are automatically shared with arista.cvp.cv_* modules.

```ini
[development]
cv_server  ansible_host= 10.90.224.122 ansible_httpapi_host=10.90.224.122

[development:vars]
ansible_connection=httpapi
ansible_httpapi_use_ssl=True
ansible_httpapi_validate_certs=False
ansible_user=cvpadmin
ansible_password=ansible
ansible_network_os=eos
ansible_httpapi_port=443
```

As modules of this collection are based on [HTTPAPI connection plugin](https://docs.ansible.com/ansible/latest/plugins/connection/httpapi.html), authentication elements shall be declared using this plugin mechanism and are automatically shared with arista.cvp.cv_* modules.

Installation

Complete installation process is available on [repository website](https://cvp.avd.sh/installation/)

Dependencies

This collection requires the following to be installed on the Ansible control machine:

__Ansible version:__

	ansible >= 2.9.0

__3rd party Python libraries:__

	[cvprac](https://github.com/aristanetworks/cvprac) version 1.0.5

	requests >= 2.22.0

	jsonschema 3.2.0

	treelib 1.5.5 (for modules in version 1)

Installation from ansible-galaxy

Ansible galaxy hosts all stable version of this collection. Installation from ansible-galaxy is the most convenient approach for consuming arista.cvp content

`shell
$ ansible-galaxy collection install arista.cvp
Process install dependency map
Starting collection install process
Installing 'arista.cvp:1.0.1' to '~/.ansible/collections/ansible_collections/arista/cvp'
`

Git installation as source of collection

You can git clone this repository and use examples folder for testing. This folder contains a set of pre-configured playbook and ansible configuration:

`shell
$ git clone https://github.com/aristanetworks/ansible-cvp.git
`

Update your ansible.cfg to update collections_paths to point to local repository

`ini
collections_paths = /path/to/local/repository:~/.ansible/collections:/usr/share/ansible/collections
`

> It is highly recommended to use a python virtual-environment to not alter your production environment.

Docker for testing

In an effort to support both [arista.avd](https://github.com/aristanetworks/ansible-avd) and arista.cvp collections, you can find a generic docker image in [this repository](https://github.com/arista-netdevops-community/docker-avd-base).

Besides this image, a repository with some basic labs to use as part of a TOI are available in [this repository](https://github.com/arista-netdevops-community/ansible-cvp-avd-toi)

Resources

	Ansible for [Arista Validated Design](https://github.com/aristanetworks/ansible-avd)

	Ansible [EOS modules](https://docs.ansible.com/ansible/latest/modules/list_of_network_modules.html#eos) on ansible documentation.

	[CloudVision Platform](https://www.arista.com/en/products/eos/eos-cloudvision) overvierw

	[Training Lab content](https://github.com/arista-netdevops-community/ansible-cvp-avd-toi)

	Content for [demo using Arista Validated Design and arista.cvp collection.](https://github.com/arista-netdevops-community/ansible-avd-cloudvision-demo)

Ask a question

Support for this arista.cvp collection is provided by the community directly in this repository. Easiest way to get support is to open [an issue](https://github.com/aristanetworks/ansible-cvp/issues).

Branching Model

	The __`devel`__ branch corresponds to the release actively under development.

	The __`releases/x.x.x`__ branches correspond to stable releases.

	Fork repository and create a branch based on __`devel`__ to set up a dev environment if you want to open a PR.

	See the ansible-cvp release for information about active branches.

License

Project is published under [Apache 2.0 License](LICENSE)

 # Contribute to Arista ansible-cvp collection

<!– @import “[TOC]” {cmd=”toc” depthFrom=1 depthTo=6 orderedList=false} –>

<!– code_chunk_output –>

	[Contribute to Arista ansible-cvp collection](#contribute-to-arista-ansible-cvp-collection)
- [Reporting Bugs](#reporting-bugs)
- [Feature Requests](#feature-requests)
- [Using the issue tracker](#using-the-issue-tracker)
- [Branches](#branches)

	[Current active branches](#current-active-branches)

	[Pull requests](#pull-requests)

<!– /code_chunk_output –>

Please take a moment to review this document in order to make the contribution
process easy and effective for everyone involved.

Following these guidelines helps to communicate that you respect the time of
the developers managing and developing this open source project. In return,
they should reciprocate that respect in addressing your issue or assessing
patches and features.

Reporting Bugs

	First, ensure that you’ve installed the [latest stable version](https://github.com/aristanetworks/ansible-cvp/releases)

of __ansible-cvp__. If you’re running an older version, it’s possible that the bug has
already been fixed.

	Next, check the GitHub [issues list](https://github.com/aristanetworks/ansible-cvp/issues)

to see if the bug you’ve found has already been reported. If you think you may
be experiencing a reported issue that hasn’t already been resolved, please
click “add a reaction” in the top right corner of the issue and add a thumbs
up (+1). You might also want to add a comment describing how it’s affecting your
installation. This will allow us to prioritize bugs based on how many users are
affected.

	If you haven’t found an existing issue that describes your suspected bug, Do not file an issue until you

have received confirmation that it is in fact a bug. Invalid issues are very
distracting and slow the pace at which __ansible-cvp__ is developed.

	When submitting an issue, please be as descriptive as possible. Be sure to

include:

	The environment in which __ansible-cvp__ is running

	The exact steps that can be taken to reproduce the issue (if applicable)

	Any error messages generated

	Screenshots (if applicable)

	Please avoid prepending any sort of tag (e.g. “[Bug]”) to the issue title.

The issue will be reviewed by a moderator after submission and the appropriate
labels will be applied for categorization.

	Keep in mind that we prioritize bugs based on their severity and how much

work is required to resolve them. It may take some time for someone to address
your issue.

Feature Requests

	First, check the GitHub [issues list](https://github.com/aristanetworks/ansible-cvp/issues)

to see if the feature you’re requesting is already listed. (Be sure to search
closed issues as well, since some feature requests have been rejected.) If the
feature you’d like to see has already been requested and is open, click “add a
reaction” in the top right corner of the issue and add a thumbs up (+1). This
ensures that the issue has a better chance of receiving attention. Also feel
free to add a comment with any additional justification for the feature.
(However, note that comments with no substance other than a “+1” will be
deleted. Please use GitHub’s reactions feature to indicate your support.)

	Before filing a new feature request, consider raising your idea on the

mailing list first. Feedback you receive there will help validate and shape the
proposed feature before filing a formal issue.

	Good feature requests are very narrowly defined. Be sure to thoroughly

describe the functionality and data model(s) being proposed. The more effort
you put into writing a feature request, the better its chance is of being
implemented. Overly broad feature requests will be closed.

	When submitting a feature request on GitHub, be sure to include the

following:

	A detailed description of the proposed functionality

	A use case for the feature; who would use it and what value it would add
to __ansible-cvp__

	A rough description of changes necessary

	Any third-party libraries or other resources which would be involved

	Please avoid prepending any sort of tag (e.g. “[Feature]”) to the issue

title. The issue will be reviewed by a moderator after submission and the
appropriate labels will be applied for categorization.

Using the issue tracker

The issue tracker is the preferred channel for [__bug reports__](#bugs),
[__features requests__](#features) and [__submitting pull
requests__](#pull-requests), but please respect the following restrictions:

	Please do not use the issue tracker for personal support requests.

	Please do not derail or troll issues. Keep the discussion on topic and
respect the opinions of others.

Branches

Current active branches

	Current development branch: __`devel`__

	Stable branch: releases/v1.1.x

Pull requests

	Be sure to open an issue before starting work on a pull request, and

discuss your idea with the __ansible-cvp__ maintainers before beginning work. This will
help prevent wasting time on something that might we might not be able to
implement. When suggesting a new feature, also make sure it won’t conflict with
any work that’s already in progress.

	Any pull request which does _not_ relate to an accepted issue will be closed.

	All major new functionality must include relevant tests where applicable.

	When submitting a pull request, please be sure to work off of the releases/grant-v1.x

branch, rather than master. The releases/grant-v1.x branch is used for ongoing
development, while master is used for tagging new stable releases.

	All code submissions should meet the following criteria (CI will enforce

these checks):

	Python syntax is valid

	All tests pass when run with make sanity

	PEP 8 compliance is enforced, with the exception that lines may be
greater than 80 characters in length

Adhering to the following this process is the best way to get your work
merged:

	[Fork](http://help.github.com/fork-a-repo/) the repo, clone your fork,
and configure the remotes:

```bash
# Clone your fork of the repo into the current directory
git clone https://github.com/<your-username>/ansible-cvp

# Navigate to the newly cloned directory
cd ansible-cvp

# Assign the original repo to a remote called “upstream”
git remote add upstream https://github.com/aristanetworks/ansible-cvp.git
```


	If you cloned a while ago, get the latest changes from upstream:

`bash
git checkout <dev-branch>
git pull upstream <dev-branch>
`

> Please refer to [branches section](#branches) to get current branch to use as <dev-branch>

	Create a new topic branch (off the main project development branch) to
contain your feature, change, or fix:

`bash
git checkout -b <topic-branch-name>
`

	Commit your changes in logical chunks. Please adhere to these [git commit
message guidelines](http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html)
or your code is unlikely be merged into the main project. Use Git’s
[interactive rebase](https://help.github.com/articles/interactive-rebase)
feature to tidy up your commits before making them public.

	Locally merge (or rebase) the upstream development branch into your topic branch:

`bash
git pull [--rebase] upstream <dev-branch>
`

	Push your topic branch up to your fork:

`bash
git push origin <topic-branch-name>
`

	[Open a Pull Request](https://github.com/aristanetworks/ansible-cvp/pulls)
with a clear title and description.

 ## Change Summary

<!– Enter short PR description –>

Related Issue(s)

Fixes #<ISSUE ID>

Component(s) name

arista.cvp.<module-name>

Proposed changes
<!— Describe your changes in detail –>
<!— Describe data model implemented for new features –>

How to test
<!— Please describe in detail how you tested your changes. –>
<!— Include details of your testing environment, and the tests you ran to –>

Checklist

User Checklist

<!– Add your own checklist using MD syntax and by replacing N/A –>
- N/A

Repository Checklist

<!— Go over all the following points, and put an x in all the boxes that apply. –>
<!— If you’re unsure about any of these, don’t hesitate to ask. We’re here to help! –>
- [] My code has been rebased from devel before I start
- [] I have read the [CONTRIBUTING](https://avd.sh/en/latest/docs/contribution/overview.html) document.
- [] My change requires a change to the documentation and documentation have been updated accordingly. (check the box if not applicable)
- [] I have updated [molecule CI](https://github.com/aristanetworks/ansible-avd/tree/devel/ansible_collections/arista/avd/molecule) testing accordingly. (check the box if not applicable)

 # Ansible Modules for Arista CloudVision Platform

About

[Arista Networks](https://www.arista.com/) supports Ansible for managing devices running the EOS operating system through [CloudVision platform (CVP)](https://www.arista.com/en/products/eos/eos-cloudvision). This roles includes a set of ansible modules that perform specific configuration tasks on CVP server. These tasks include: collecting facts, managing configlets, containers, build provisionning topology and running tasks.

	<p align=”center”>
	

</p>

Requirements

Arista CloudVision

Current active branch:

	__CVP 2020.2.x and onward__: starting version [ansible-cvp 2.0.0](https://github.com/aristanetworks/ansible-cvp/releases/tag/v2.0.0)

	!!! info
	Starting version 2.0.0, collection uses [cvprac](https://github.com/aristanetworks/cvprac) as Cloudvision connection manager. So support for any new CLoudvision server is tied to it support in this python library.

ansible-cvp | 1.0.0 | 1.1.0 | 2.0.0 & higher |

———– | —– | —– | ————– |

2018.2 | ✅ | ✅ | ✅ |

2019.x | ✅ | ✅ | ✅ |

2020.1 | | ✅ | ✅ |

>= 2020.2 | | | ✅ |

Python

	Python >=3.8

Additional Python Libraries required

__Ansible version:__

	ansible >= 2.9.0

__3rd party Python libraries:__

	[cvprac](https://github.com/aristanetworks/cvprac)

	requests

	jsonschema

	treelib (for modules in version 1)

`
--8<-- "requirements.txt"
`

Installation

```shell
pip install ansible_collections/arista/cvp/requirements.txt

# For modules in version 1
pip install treelib>=1.5.5
```

Ansible galaxy hosts all stable version of this collection. Installation from ansible-galaxy is the most convenient approach for consuming arista.cvp content

`shell
$ ansible-galaxy collection install arista.cvp
Process install dependency map
Starting collection install process
Installing 'arista.cvp:1.1.0' to '~/.ansible/collections/ansible_collections/arista/cvp'
`

Complete installation process is available on [repository website](docs/installation/requirements/)

Collection overview

This repository provides content for Ansible’s collection __arista.cvp__ with following content:

List of available modules

__Version 3:__

	[__arista.cvp.cv_configlet_v3__](docs/modules/cv_configlet_v3.rst/) - Manage configlet configured on CVP.

	[__arista.cvp.cv_container_v3__](docs/modules/cv_container_v3.rst/) - Manage container topology and attach configlet and devices to containers.

	[__arista.cvp.cv_device_v3__](docs/modules/cv_device_v3.rst/) - Manage devices configured on CVP

	[__arista.cvp.cv_task_v3__](docs/modules/cv_task_v3.rst/) - Run tasks created on CVP.

__Legacy / Version 1:__

	[__arista.cvp.cv_facts__](docs/modules/cv_facts.rst/) - Collect CVP facts from server like list of containers, devices, configlet and tasks.

	[__arista.cvp.cv_configlet__](docs/modules/cv_configlet.rst/) - Manage configlet configured on CVP.

	[__arista.cvp.cv_container__](docs/modules/cv_container.rst/) - Manage container topology and attach configlet and devices to containers.

	[__arista.cvp.cv_device__](docs/modules/cv_device.rst/) - Manage devices configured on CVP

	[__arista.cvp.cv_task__](docs/modules/cv_task.rst/) - Run tasks created on CVP.

List of available roles

	[__arista.cvp.dhcp_configuration__](roles/dhcp_configuration/) - Configure DHCPD service on a Cloudvision server or any dhcpd service.

	[__arista.cvp.configlet_sync__](roles/configlets_sync/) - Synchronize configlets between multiple Cloudvision servers.

Example

This example outlines how to use arista.cvp to create a containers topology on Arista CloudVision.

A dedicated repository is available for step by step examples on [ansible-cvp-toi](https://github.com/arista-netdevops-community/ansible-cvp-toi).

A [complete end to end demo](https://github.com/arista-netdevops-community/ansible-avd-cloudvision-demo) using [Arista Validated Design collection](https://github.com/aristanetworks/ansible-avd) and CloudVision modules is available as an example.

Below is a very basic example to build a container topology on a CloudVision platform assuming you have 3 veos named veos0{1,3} and a configlet named alias

```yaml
—
- name: Playbook to demonstrate cvp modules.


hosts: cv_server
connection: local
gather_facts: no
collections:



	arista.cvp








	vars:
	# Configlet definition
device_configuration:


mlag-01a-config: “{{lookup(‘file’, ‘./config-router-mlag01a.conf’)}}”
mlag-01b-config: “{{lookup(‘file’, ‘./config-router-mlag01b.conf’)}}”




# Container definition
containers_provision:



	Fabric:
	parentContainerName: Tenant



	Spines:
	parentContainerName: Fabric



	Leaves:
	parentContainerName: Fabric
configlets:



	alias









	MLAG01:
	parentContainerName: Leaves








# Device definition
devices_provision:



	fqdn: mlag-01a
parentContainerName: ‘MLAG01’
configlets:



	‘mlag-01a-config’







systemMacAddress: ‘50:8d:00:e3:78:aa’



	fqdn: mlag-01b
parentContainerName: ‘MLAG01’
configlets:



	‘mlag-01b-config’







systemMacAddress: ‘50:8d:00:e3:78:bb’










	tasks:
	
	name: “Build Container topology on {{inventory_hostname}}”
arista.cvp.cv_container_v3:


topology: ‘{{containers_provision}}’






	name: “Configure devices on {{inventory_hostname}}”
arista.cvp.cv_device_v3:


devices: ‘{{devices_provision}}’















```

As modules of this collection are based on [HTTPAPI connection plugin](https://docs.ansible.com/ansible/latest/plugins/httpapi.html), authentication elements shall be declared using this plugin mechanism and are automatically shared with arista.cvp.cv_* modules.

```ini
[development]
cv_server  ansible_host= 10.90.224.122 ansible_httpapi_host=10.90.224.122

[development:vars]
ansible_connection=httpapi
ansible_httpapi_use_ssl=True
ansible_httpapi_validate_certs=False
ansible_user=cvpadmin
ansible_password=ansible
ansible_network_os=eos
ansible_httpapi_port=443
```

As modules of this collection are based on [HTTPAPI connection plugin](https://docs.ansible.com/ansible/latest/plugins/httpapi.html), authentication elements shall be declared using this plugin mechanism and are automatically shared with arista.cvp.cv_* modules.

License

Project is published under [Apache License](LICENSE).

Ask a question

The best platform for general feedback, assistance, and other discussion is our [GitHub discussions](). To report a bug or request a specific feature, please open a [GitHub issue](https://github.com/aristanetworks/ansible-cvp/issues) using the appropriate template.

Contributing

Contributing pull requests are gladly welcomed for this repository. If you are planning a big change, please start a discussion first to make sure we’ll be able to merge it.

You can also open an [issue](https://github.com/aristanetworks/ansible-cvp/issues) to report any problem or to submit enhancement.

A more complete [guide for contribution](https://avd.sh/en/latest/docs/contribution/overview.html) is available in the repository

 # Contribute to Arista ansible-cvp collection

<!– @import “[TOC]” {cmd=”toc” depthFrom=1 depthTo=6 orderedList=false} –>

<!– code_chunk_output –>

	[Contribute to Arista ansible-cvp collection](#contribute-to-arista-ansible-cvp-collection)
- [Reporting Bugs](#reporting-bugs)
- [Feature Requests](#feature-requests)
- [Using the issue tracker](#using-the-issue-tracker)
- [Branches](#branches)

	[Current active branches](#current-active-branches)

	[Pull requests](#pull-requests)

<!– /code_chunk_output –>

Please take a moment to review this document in order to make the contribution
process easy and effective for everyone involved.

Following these guidelines helps to communicate that you respect the time of
the developers managing and developing this open source project. In return,
they should reciprocate that respect in addressing your issue or assessing
patches and features.

Reporting Bugs

	First, ensure that you’ve installed the [latest stable version](https://github.com/aristanetworks/ansible-cvp/releases)

of __ansible-cvp__. If you’re running an older version, it’s possible that the bug has
already been fixed.

	Next, check the GitHub [issues list](https://github.com/aristanetworks/ansible-cvp/issues)

to see if the bug you’ve found has already been reported. If you think you may
be experiencing a reported issue that hasn’t already been resolved, please
click “add a reaction” in the top right corner of the issue and add a thumbs
up (+1). You might also want to add a comment describing how it’s affecting your
installation. This will allow us to prioritize bugs based on how many users are
affected.

	If you haven’t found an existing issue that describes your suspected bug, Do not file an issue until you

have received confirmation that it is in fact a bug. Invalid issues are very
distracting and slow the pace at which __ansible-cvp__ is developed.

	When submitting an issue, please be as descriptive as possible. Be sure to

include:

	The environment in which __ansible-cvp__ is running

	The exact steps that can be taken to reproduce the issue (if applicable)

	Any error messages generated

	Screenshots (if applicable)

	Please avoid prepending any sort of tag (e.g. “[Bug]”) to the issue title.

The issue will be reviewed by a moderator after submission and the appropriate
labels will be applied for categorization.

	Keep in mind that we prioritize bugs based on their severity and how much

work is required to resolve them. It may take some time for someone to address
your issue.

Feature Requests

	First, check the GitHub [issues list](https://github.com/aristanetworks/ansible-cvp/issues)

to see if the feature you’re requesting is already listed. (Be sure to search
closed issues as well, since some feature requests have been rejected.) If the
feature you’d like to see has already been requested and is open, click “add a
reaction” in the top right corner of the issue and add a thumbs up (+1). This
ensures that the issue has a better chance of receiving attention. Also feel
free to add a comment with any additional justification for the feature.
(However, note that comments with no substance other than a “+1” will be
deleted. Please use GitHub’s reactions feature to indicate your support.)

	Before filing a new feature request, consider raising your idea on the

mailing list first. Feedback you receive there will help validate and shape the
proposed feature before filing a formal issue.

	Good feature requests are very narrowly defined. Be sure to thoroughly

describe the functionality and data model(s) being proposed. The more effort
you put into writing a feature request, the better its chance is of being
implemented. Overly broad feature requests will be closed.

	When submitting a feature request on GitHub, be sure to include the

following:

	A detailed description of the proposed functionality

	A use case for the feature; who would use it and what value it would add
to __ansible-cvp__

	A rough description of changes necessary

	Any third-party libraries or other resources which would be involved

	Please avoid prepending any sort of tag (e.g. “[Feature]”) to the issue

title. The issue will be reviewed by a moderator after submission and the
appropriate labels will be applied for categorization.

Using the issue tracker

The issue tracker is the preferred channel for [__bug reports__](#bugs),
[__features requests__](#features) and [__submitting pull
requests__](#pull-requests), but please respect the following restrictions:

	Please do not use the issue tracker for personal support requests.

	Please do not derail or troll issues. Keep the discussion on topic and
respect the opinions of others.

Branches

Current active branches

	Current development branch: __`devel`__

	Stable branch: releases/v1.1.x

Pull requests

	Be sure to open an issue before starting work on a pull request, and

discuss your idea with the __ansible-cvp__ maintainers before beginning work. This will
help prevent wasting time on something that might we might not be able to
implement. When suggesting a new feature, also make sure it won’t conflict with
any work that’s already in progress.

	Any pull request which does _not_ relate to an accepted issue will be closed.

	All major new functionality must include relevant tests where applicable.

	When submitting a pull request, please be sure to work off of the releases/grant-v1.x

branch, rather than master. The releases/grant-v1.x branch is used for ongoing
development, while master is used for tagging new stable releases.

	All code submissions should meet the following criteria (CI will enforce

these checks):

	Python syntax is valid

	All tests pass when run with make sanity

	PEP 8 compliance is enforced, with the exception that lines may be
greater than 80 characters in length

Adhering to the following this process is the best way to get your work
merged:

	[Fork](http://help.github.com/fork-a-repo/) the repo, clone your fork,
and configure the remotes:

```bash
# Clone your fork of the repo into the current directory
git clone https://github.com/<your-username>/ansible-cvp

# Navigate to the newly cloned directory
cd ansible-cvp

# Assign the original repo to a remote called “upstream”
git remote add upstream https://github.com/aristanetworks/ansible-cvp.git
```


	If you cloned a while ago, get the latest changes from upstream:

`bash
git checkout <dev-branch>
git pull upstream <dev-branch>
`

> Please refer to [branches section](#branches) to get current branch to use as <dev-branch>

	Create a new topic branch (off the main project development branch) to
contain your feature, change, or fix:

`bash
git checkout -b <topic-branch-name>
`

	Commit your changes in logical chunks. Please adhere to these [git commit
message guidelines](http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html)
or your code is unlikely be merged into the main project. Use Git’s
[interactive rebase](https://help.github.com/articles/interactive-rebase)
feature to tidy up your commits before making them public.

	Locally merge (or rebase) the upstream development branch into your topic branch:

`bash
git pull [--rebase] upstream <dev-branch>
`

	Push your topic branch up to your fork:

`bash
git push origin <topic-branch-name>
`

	[Open a Pull Request](https://github.com/aristanetworks/ansible-cvp/pulls)
with a clear title and description.

 # Getting Started

This example outlines how to use arista.cvp to create a containers topology on Arista CloudVision.

A [complete end to end demo](https://github.com/aristanetworks/netdevops-examples#demo-content) using [Arista Validated Design collection](https://github.com/aristanetworks/ansible-avd) and CloudVision modules is available as an example.

Below is a very basic example to build a container topology on a CloudVision platform assuming:

	create a tree of containers

	Move devices under MLAG01 container

	Create configlets with MLAG devices configuration

	Attach configlets to device.


```yaml
—
- name: Playbook to demonstrate cvp modules.


hosts: cv_server
connection: local
gather_facts: no
collections:



	arista.cvp








	vars:
	# Configlet definition
device_configuration:


mlag-01a-config: “{{lookup(‘file’, ‘./config-router-mlag01a.conf’)}}”
mlag-01b-config: “{{lookup(‘file’, ‘./config-router-mlag01b.conf’)}}”




# Container definition
containers_provision:



	Fabric:
	parentContainerName: Tenant



	Spines:
	parentContainerName: Fabric



	Leaves:
	parentContainerName: Fabric
configlets:



	alias









	MLAG01:
	parentContainerName: Leaves








# Device definition
devices_provision:



	fqdn: mlag-01a
parentContainerName: ‘MLAG01’
configlets:



	‘mlag-01a-config’







systemMacAddress: ‘50:8d:00:e3:78:aa’



	fqdn: mlag-01b
parentContainerName: ‘MLAG01’
configlets:



	‘mlag-01b-config’







systemMacAddress: ‘50:8d:00:e3:78:bb’










	tasks:
	
	name: “Build Container topology on {{inventory_hostname}}”
arista.cvp.cv_container_v3:


topology: ‘{{containers_provision}}’






	name: “Configure devices on {{inventory_hostname}}”
arista.cvp.cv_device_v3:


devices: ‘{{devices_provision}}’















```

As modules of this collection are based on [HTTPAPI connection plugin](https://docs.ansible.com/ansible/latest/plugins/httpapi.html), authentication elements shall be declared using this plugin mechanism and are automatically shared with arista.cvp.cv_* modules.

```ini
[development]
cv_server  ansible_host= 10.90.224.122 ansible_httpapi_host=10.90.224.122

[development:vars]
ansible_connection=httpapi
ansible_httpapi_use_ssl=True
ansible_httpapi_validate_certs=False
ansible_user=cvpadmin
ansible_password=ansible
ansible_network_os=eos
ansible_httpapi_port=443
```

As modules of this collection are based on [HTTPAPI connection plugin](https://docs.ansible.com/ansible/latest/plugins/httpapi.html), authentication elements shall be declared using this plugin mechanism and are automatically shared with arista.cvp.cv_* modules.

cv_configlet

Create, Delete, or Update CloudVision Portal Configlets.

	Synopsis

	Module-specific Options

	Examples:

	Author

Synopsis

CloudVison Portal Configlet compares the list of configlets and config in
configlets against cvp-facts then adds, deletes, or updates
them as appropriate.
If a configlet is in cvp_facts but not in configlets it will be deleted.
If a configlet is in configlets but not in cvp_facts it will be created.
If a configlet is in both configlets and cvp_facts it configuration will
be compared and updated with the version in configlets
if the two are different.

Module-specific Options

The following options may be specified for this module:

 cv_configlet_v3

cv_configlet_v3

Create, Delete, or Update CloudVision Portal Configlets.

Module added in version 3.0.0

	Synopsis

	Module-specific Options

	Examples:

	Author

Synopsis

CloudVison Portal Configlet compares the list of configlets and config in
configlets against cvp-facts then adds, deletes, or updates
them as appropriate.
If a configlet is in cvp_facts but not in configlets it will be deleted.
If a configlet is in configlets but not in cvp_facts it will be created.
If a configlet is in both configlets and cvp_facts it configuration will
be compared and updated with the version in configlets
if the two are different.

Module-specific Options

The following options may be specified for this module:

 cv_container

cv_container

Manage Provisioning topology.

	Synopsis

	Module-specific Options

	Examples:

	Author

Synopsis

CloudVision Portal Configlet configuration requires a dictionary of containers with their parent, to create and delete containers on CVP side.
Returns number of created and/or deleted containers

Module-specific Options

The following options may be specified for this module:

 cv_container_v3

cv_container_v3

Manage Provisioning topology.

Module added in version 3.0.0

	Synopsis

	Module-specific Options

	Examples:

	Author

Synopsis

CloudVision Portal Configlet configuration requires a dictionary of containers with their parent, to create and delete containers on CVP side.
Module also supports to configure configlets at container level.
Returns number of created and/or deleted containers

Module-specific Options

The following options may be specified for this module:

 cv_device

cv_device

Provision, Reset, or Update CloudVision Portal Devices.

	Synopsis

	Module-specific Options

	Examples:

	Author

Synopsis

CloudVison Portal Device compares the list of Devices
in devices against cvp-facts then adds, resets, or updates them as appropriate.
If a device is in cvp_facts but not in devices it will be reset to factory defaults in ZTP mode
If a device is in devices but not in cvp_facts it will be provisioned
If a device is in both devices and cvp_facts its configlets and imageBundles will be compared
and updated with the version in devices if the two are different.
Warning - reset means devices will be erased and will run full ZTP process. Use this function with caution !

Module-specific Options

The following options may be specified for this module:

 cv_device_v3

cv_device_v3

Manage Provisioning topology.

Module added in version 3.0.0

	Synopsis

	Module-specific Options

	Examples:

	Author

Synopsis

CloudVision Portal Configlet configuration requires a dictionary of containers with their parent, to create and delete containers on CVP side.
Returns number of created and/or deleted containers

Module-specific Options

The following options may be specified for this module:

 cv_facts

cv_facts

Collect facts from CloudVision Portal.

	Synopsis

	Module-specific Options

	Examples:

	Author

Synopsis

Returns list of devices, configlets, containers and images

Module-specific Options

The following options may be specified for this module:

 cv_task

cv_task

Execute or Cancel CVP Tasks.

	Synopsis

	Module-specific Options

	Examples:

	Author

Synopsis

CloudVison Portal Task module

Module-specific Options

The following options may be specified for this module:

 cv_task_v3

cv_task_v3

Execute or Cancel CVP Tasks.

Module added in version 3.0.0

	Synopsis

	Module-specific Options

	Examples:

	Author

Synopsis

CloudVison Portal Task module to action pending tasks on CLoudvision

Module-specific Options

The following options may be specified for this module:

 Arista Cloudvision Ansible Modules

Arista Cloudvision Ansible Modules

Modules List

	 Module arista.cvp.cv_configlet

	 Module arista.cvp.cv_facts

	 Module arista.cvp.cv_container

	 Module arista.cvp.cv_configlet_v3

	 Module arista.cvp.cv_task_v3

	 Module arista.cvp.cv_task

	 Module arista.cvp.cv_device_v3

	 Module arista.cvp.cv_container_v3

	 Module arista.cvp.cv_device

 <no title>

 # Common Error messages

> All Ansible error messages should be read from bottom to top.

cv_facts error messages

Unsupported CV version

Prior version __2.0.0__ arista.cvp collection ran test to determine Cloudvision version. If version is not supported, following error should happen:

`shell
\"/var/folders/q0/92fg6g7s1bv6kgfdcgfjwt0c0000gp/T/ansible_arista.cvp.cv_facts_payload_2ld7vf9v/ansible_arista.cvp.\
cv_facts_payload.zip/ansible_collections/arista/cvp/plugins/modules/cv_facts.py\", line 359, in facts_builder\n\
AttributeError: 'NoneType' object has no attribute 'get_cvp_info'\n", "module_stdout": "", "msg": "MODULE \
FAILURE\nSee stdout/stderr for the exact error", "rc": 1}
`

cv_container

Missing Treelib requirement

[Treelib](https://treelib.readthedocs.io/en/latest/) is a python library used to build container topology. When missing, Ansible raise following error message

`shell
\"/tmp/ansible_arista.cvp.cv_container_payload_YG2p15/ansible_arista.cvp.cv_container_payload.zip/ansible_collections\
/arista/cvp/plugins/modules/cv_container.py\", line 254, in tree_build_from_dict\n\
NameError: global name 'Tree' is not defined\n",
`

With newer version of the collection, module should fails with an specific message like below:

```shell
TASK [running cv_container in merge on cv_server] *************************
Wednesday 07 October 2020  08:21:50 +0200 (0:00:20.050)       0:00:20.114 *
Wednesday 07 October 2020  08:21:50 +0200 (0:00:20.050)       0:00:20.114 *
fatal: [cv_server]: FAILED! => changed=false


msg: treelib required for this module




```


 <no title>

 # Cloudvision Authentication

Cloudvision supports 2 different types of authentication depending on what kind of instance you are targeting:

	[On-premise Cloudvision](https://www.arista.com/en/products/eos/eos-cloudvision) instance: username and password authentication

	[Cloudvision-as-a-Service](https://www.youtube.com/embed/Sobh9XVZhcw?rel=0&wmode=transparent): User token authentication

On-premise Cloudvision authentication

This authentication mechanism is default approach leveraged in the collection and can be configured as below in your variables. It is based on a pure __username/password__ model

```yaml
# Default Ansible variables for authentication
ansible_host: < IP address or hostname to target >
ansible_user: < Username to connect to CVP instance >
ansible_ssh_pass: < Password to use to connect to CVP instance >
ansible_connection: httpapi
ansible_network_os: eos

# Optional Ansible become configuration.
ansible_become: true
ansible_become_method: enable

# HTTPAPI plugin configuration
ansible_httpapi_port: ‘{{ansible_port}}’
ansible_httpapi_host: ‘{{ ansible_host }}’
ansible_httpapi_use_ssl: true
ansible_httpapi_validate_certs: false
```

Cloudvision as a Service authentication

This authentication method leverage a __user token__ to first get from your CVaaS instance. Then, instruct ansible to use token instead of username and password authentication

```yaml
# Default Ansible variables for authentication
ansible_host: < IP address or hostname to target >
ansible_user: cvaas # Shall not be changed. ansible will switch to cvaas mode
ansible_ssh_pass: < User token to use to connect to CVP instance >
ansible_connection: httpapi
ansible_network_os: eos

# Optional Ansible become configuration.
ansible_become: true
ansible_become_method: enable

# HTTPAPI plugin configuration
ansible_httpapi_port: ‘{{ansible_port}}’
ansible_httpapi_host: ‘{{ ansible_host }}’
ansible_httpapi_use_ssl: true
ansible_httpapi_validate_certs: false
```

How to validate SSL certificate

Validate SSL cert signed by public CA

Starting version 2.1.1, arista.cvp collection supports mechanism to validate SSL certificate. To configure ansible to validate SSL certificate provided by your CV instance, you must update httpapi information like this:

`yaml
HTTPAPI plugin configuration
ansible_httpapi_port: '{{ansible_port}}'
ansible_httpapi_host: '{{ ansible_host }}'
ansible_httpapi_use_ssl: true
ansible_httpapi_validate_certs: true
`

Validate SSL cert signed by custom CA

> This mechanism works also with self-signed certificate

Update httpapi as shown below:

`yaml
HTTPAPI plugin configuration
ansible_httpapi_port: '{{ansible_port}}'
ansible_httpapi_host: '{{ ansible_host }}'
ansible_httpapi_use_ssl: true
ansible_httpapi_validate_certs: true
`

Since HTTPAPI plugin is based on Python Requests library, you need to use Requests method to [support custom CA_BUNDLE](https://requests.readthedocs.io/en/master/user/advanced/#ssl-cert-verification)

`shell
$ export REQUESTS_CA_BUNDLE=/etc/ssl/certs/ca-certificates.crt
`

> Please note export is only working in your active shell unless you configure your .bashrc or .zshrc with this configuration.

For information, Requests embeds its bundles in the following paths, for reference:

`shell
/usr/local/lib/python2.7/site-packages/requests/cacert.pem
/usr/lib/python3/dist-packages/requests/cacert.pem
`

Validate SSL using Cloudvision self-signed certificate

Update httpapi as shown below:

`yaml
HTTPAPI plugin configuration
ansible_httpapi_port: '{{ansible_port}}'
ansible_httpapi_host: '{{ ansible_host }}'
ansible_httpapi_use_ssl: true
ansible_httpapi_validate_certs: true
`

And then, import your CA or server CRT file into database of your CA for Python using [certifi](https://github.com/certifi/python-certifi) which is [recommended libs from Requests](https://requests.readthedocs.io/en/master/community/recommended/#certifi-ca-bundle)

```shell
# Get CVP SSL Cert (If not already provided by your CV admin)
$ true | openssl s_client -connect <YOUR-CV-IP>:443 2>/dev/null | openssl x509 > cvp.crt

# Update Python DB for known CA
$ cat cvp.crt >> python -m certifi
```

> Note it is per virtual environment configuration.

Invalid SSL certification

If identity cannot be validated by ansible, playbook stops with following error message:

```shell
$ ansible-playbook playbooks/extract-facts.yml

PLAY [CV Facts] ***********************************************************

TASK [Gather CVP facts from cv_server] ************************************
Monday 05 October 2020  21:09:22 +0200 (0:00:00.063)       0:00:00.063 ****
Monday 05 October 2020  21:09:22 +0200 (0:00:00.063)       0:00:00.063 ****
fatal: [cv_server]: FAILED! => changed=false


msg: |2-



	x.x.x.x: HTTPSConnectionPool(host=’x.x.x.x’, port=443): Max retries 
	exceeded with url: /web/login/authenticate.do (Caused by SSLError(SSLError(1, ‘[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:852)’),))











```

Configure connection timeout

When used in large environment, API calls can take more than 30 seconds to run. It can be configured in ansible by leveraging either ansible.cfg file or variables.

Ansible configuration file

Edit ansible.cfg file and add the following

`ini
[persistent_conenction]
connection_timeout = 120
command_timeout = 120
`

> If also configured in variables, it will be overwrite.

Inventory variables

Add in either inventory file, group_vars or host_vars following lines:

`yaml

ansible_connect_timeout: 30
ansible_command_timeout: 90
`

 <no title>

 # Debug logs

If required, arista.cvp collection supports debug log to get more information about process execution and save all these information in a log file.

> Only for advanced users and support requests.

Activate debug

In your shell, create a file named activate-arista-cvp-log.sh:

```shell
$ vim activate-arista-cvp-log.sh

#!/bin/sh


	if [[ ! -z ANSIBLE_CVP_LOG_FILE ]]; then
	export ANSIBLE_CVP_LOG_FILE=arista.cvp.debug.log





fi
if [[ ! -z ANSIBLE_CVP_LOG_LEVEL ]]; then


export ANSIBLE_CVP_LOG_LEVEL=debug




fi
if [[ ! -z ANSIBLE_CVP_LOG_APICALL ]]; then


export ANSIBLE_CVP_LOG_APICALL=warning




fi

echo “Configure module for logging:”
echo ”  - Logging Level: ${ANSIBLE_CVP_LOG_LEVEL}”
echo ”  - Logging File: ${ANSIBLE_CVP_LOG_FILE}”
echo ”  - URL Lib logging: ${ANSIBLE_CVP_LOG_APICALL}”
```

Then, when you want to activate log, run this command:

```shell
$ source activate-arista-cvp-log.sh
Configure module for logging:



	Logging Level: debug


	Logging File: arista.cvp.debug.log


	URL Lib logging: warning







```

Get debug logs

After your run your playbook, a log file should be available in your shell and you can read it with following command:

```shell
$ less arista.cvp.debug.log

[…]
2020-10-05 18:13:43,065 - arista.cvp.cv_facts: INFO - func: facts_builder (L:429) - ** Collecting configlets facts …
2020-10-05 18:13:43,066 - arista.cvp.cv_facts: INFO - func: facts_configlets (L:246) - Collecting facts v2
2020-10-05 18:13:44,700 - arista.cvp.cv_facts: INFO - func: facts_configlets (L:253) - Devices part of facts, using cached version
2020-10-05 18:13:44,700 - arista.cvp.cv_facts: INFO - func: facts_configlets (L:260) - Containers part of facts, using cached version
2020-10-05 18:13:44,700 - arista.cvp.cv_facts: INFO - func: facts_configlets (L:273) - building list of mapping with devices and containers for configlet AVD_DC1-LEAF2B
2020-10-05 18:13:44,700 - arista.cvp.tools_inventory: DEBUG - func: find_hostname_by_mac (L:49 ) - device data: {‘modelName’: ‘vEOS’, ‘internalVersion’: ‘4.24.0F’, ‘systemMacAddress’: ‘0c:1d:c0:7f:d9:6c’, ‘bootupTimestamp’: 1600691806.3303108, ‘version’: ‘4.24.0F’, ‘architecture’: ‘’, ‘internalBuild’: ‘da8d6269-c25f-4a12-930b-c3c42c12c38a’, ‘hardwareRevision’: ‘’, ‘domainName’: ‘eve.emea.lab’, ‘hostname’: ‘DC1-LEAF2B’, ‘fqdn’: ‘DC1-LEAF2B.eve.emea.lab’, ‘serialNumber’: ‘86277F11ED731FAA3943F1838B6799AA’, ‘danzEnabled’: False, ‘mlagEnabled’: False, ‘streamingStatus’: ‘active’, ‘parentContainerKey’: ‘container_99ea374c-7bc7-454a-b529-31fd181edab3’, ‘status’: ‘Registered’, ‘complianceCode’: ‘0000’, ‘complianceIndication’: ‘’, ‘ztpMode’: False, ‘unAuthorized’: False, ‘ipAddress’: ‘10.73.1.16’, ‘key’: ‘0c:1d:c0:7f:d9:6c’, ‘deviceInfo’: ‘Registered’, ‘deviceStatus’: ‘Registered’, ‘isMLAGEnabled’: False, ‘isDANZEnabled’: False, ‘parentContainerId’: ‘con:
[…]
```


 }

 # Configure configlets on Cloudvision

cv_configlet manage configlets on CloudVision:

	Configlets creation

	Configlets update

	Configlets deletion

The cv_configlet actions are based on cv_facts results:

	Use intend approach

	No declarative action

To import content from text file, leverage template rendering and then load from file: use lookup() command

Inputs

Full documentation available in [module section](../../modules/cv_configlet.rst.md) and a lab is available in the following [repository](https://github.com/arista-netdevops-community/ansible-cvp-avd-toi)

Input variables

```yaml
CVP_CONFIGLETS:


TEAM01-alias: “alias a1 show version”
TEAM01-another-configlet: “alias a2 show version”




```

Module inputs

Required Inputs

	cvp_facts: Facts from cv_facts

	configlets: List of configlets to create

	configlet_filter: A filter to target only specific configlets on CV

Optional inputs

	state: Keyword to define if we want to create(present) or delete(absent) configlets


```yaml
—
- name: lab03 - cv_configlet lab


hosts: CloudVision
connection: local
gather_facts: no
vars:




	CVP_CONFIGLETS:
	TEAM01-alias: “alias a1 show version”
TEAM01-another-configlet: “alias a2 show version”









	tasks:
	
	name: “Gather CVP facts {{inventory_hostname}}”
arista.cvp.cv_facts:
register: CVP_FACTS






	name: “Configure configlet on {{inventory_hostname}}”






	arista.cvp.cv_configlet:
	cvp_facts: “{{CVP_FACTS.ansible_facts}}”
configlets: “{{CVP_CONFIGLETS}}”
configlet_filter: [“TEAM01”]
state: present





















```

Module outputs

cv_configlet outputs:

	List of created configlets

	List of updated configlets

	List of deleted configlets

	List of generated tasks.


```json
ok: [CloudVision] => {



	“msg”: {
	“changed”: true,
“data”: {


“deleted”: [],
“new”: [



	{
	“TEAM01-alias”: “success”





}




],
“tasks”: [],
“updated”: []




},
“failed”: false





}





}




            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Configure container on Cloudvision

cv_container manage containers on CloudVision:


	Support creation/deletion of containers


	Support devices binding to containers


	Support configlets binding to containers




cv_container bases its actions on cv_facts results

The cv_container actions are based on cv_facts results:


	Use intend approach


	No declarative action




## Inputs

Full documentation available in [module section](../../modules/cv_container.rst.md) and a lab is available in the following [repository](https://github.com/arista-netdevops-community/ansible-cvp-avd-toi)

### Input variables


	Container Name


	Parent container where to create container


	Optional list of devices to attach to container
- Devices must be already registered
- Should not be in undefined container


	Optional list of configlets to attach to container:
- Configlets must be created previously




```yaml
—
CVP_CONTAINERS:

	TEAM01:
	parent_container: Tenant

	TEAM01_DC:
	parent_container: TEAM01

	TEAM01_LEAFS:
	parent_container: TEAM01_DC
configlets:

	GLOBAL-ALIASES

	TEAM01_SPINES:
	parent_container: TEAM01_DC
devices:

	sw01

	sw02


```

### Module inputs

#### Required Inputs


	cvp_facts: Facts from cv_facts


	topology: Container topology




#### Optional inputs


	mode: Define how to manage container available on CV and not in customer topology
- merge (default)
- delete
- override




```yaml
- name: lab04 - cv_container lab

hosts: CloudVision
connection: local
gather_facts: no

	tasks:
	
	name: “Gather CVP facts {{inventory_hostname}}”
arista.cvp.cv_facts:
register: CVP_FACTS

	name: “Configure containers on {{inventory_hostname}}”

	arista.cvp.cv_container:
	cvp_facts: “{{CVP_FACTS.ansible_facts}}”
topology: “{{CVP_CONTAINERS}}”


```

## Module output

cv_container returns :


	List of created containers


	List of deleted containers


	List of moved devices


	List of attached configlets


	List of CV tasks generated




> Generated tasks can be consumed directly by cv_tasks.

`json
{
    "changed": false,
    "data": {
        "attached_configlet": {
            "configlet_attached": 4,
            "list": [
                [
                    {
                        "config": "alias v10 show version",
                        "containers": [ ],
                        "devices": [ ],
                        "key": "configlet_885_1325820320363417",
                        "name": "alias",
                        "type": "Static"
                    }
                ]
            ],
            "taskIds": [
                "127"
            ]
        },
        "changed": true,
        "creation_result": {
            "containers_created": "4"
        },
        "deletion_result": {
            "containers_deleted": "1"
        },
        "moved_result": {
            "devices_moved": 3,
            "list": [
                "veos01",
                "veos02",
                "veos03"
            ],
            "taskIds": [
                "125",
                "126",
                "127"
            ]
        },
        "tasks": []
    },
    "failed": false
}
`



            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Configure devices on Cloudvision

cv_device manage devices on CloudVision:


	Support Configlets attachment


	Support Container move during provisioning


	Support device reset if required




cv_device bases its actions on cv_facts results

The cv_device actions are based on cv_facts results:


	Use intend approach


	No declarative action




## Inputs

Full documentation available in [module section](../../modules/cv_container.rst.md) and a lab is available in the following [repository](https://github.com/arista-netdevops-community/ansible-cvp-avd-toi)

CloudVison Portal Device compares the list of Devices in devices against cvp-facts then adds, resets, or updates them as appropriate.


	If a device is in cvp_facts but not in devices it will be reset to factory defaults in ZTP mode


	If a device is in devices but not in cvp_facts it will be provisioned


	If a device is in both devices and cvp_facts its configlets and imageBundles will be compared and updated with the version in devices if the two are different.





	!!! Warning
	Device reset means devices will be erased and will run full ZTP process. Use this function with caution !





### Input variables


	Device name.


	Parent container where to move device.


	List of configlets to apply to the device.




```yaml
CVP_DEVICES:

	TEAM01-SPINE1:
	name: TEAM01-SPINE1
parent_container : STAGING
configlets:

	TEAM01-SPINE1

imageBundle: [] # Not yet supported

	TEAM02-SPINE1:
	name: TEAM02-SPINE1
parent_container: STAGING
configlets:

	TEAM02-SPINE1

imageBundle: [] # Not yet supporte


```

### Module inputs

#### Required Inputs


	cvp_facts: Facts from cv_facts


	devices: List of devices


	device_filter: Filter to only target devices as defined in list.




#### Optional inputs


	state: Define if module should create`(default) or `delete devices from CV




```yaml
- name: “Configure devices on {{inventory_hostname}}”

	arista.cvp.cv_device:
	devices: “{{CVP_DEVICES}}”
cvp_facts: ‘{{CVP_FACTS.ansible_facts}}’
device_filter: [‘TEAM’]
state: present

register: CVP_DEVICES_RESULTS


```

## Module output

cv_device returns :

> Generated tasks can be consumed directly by cv_tasks.

`json
{
    "msg": {
        "changed": true,
        "data": {
            "new": [],
            "reset": [],
            "tasks": [
                {
                    "currentTaskName": "Submit",
                    "description": "Ansible Configlet Update: on Device TEAM01-SPINE1",
                    "note": "",
                    "taskStatus": "ACTIVE",
                    "workOrderDetails": {
                        "ipAddress": "10.255.0.11",
                        "netElementHostName": "TEAM01-SPINE1",
                        "netElementId": "0c:1a:c1:ed:98:18",
                        "serialNumber": "6B25F852A3A3036E1ADBB4423F1E62EF",
                        "workOrderDetailsId": "",
                        "workOrderId": ""
                    },
                    "workOrderId": "8",
                    "workOrderState": "ACTIVE",
                    "workOrderUserDefinedStatus": "Pending"
                }
            ],
            "updated": [
                {
                    "TEAM01-SPINE1": "Configlets-[u'8']"
                },
                {
                    "TEAM01-SPINE1": "Device TEAM01-SPINE1 \
imageBundle cannot be updated - Exception: imageBundle_key \
check: No imageBundle specified"
                }
            ]
        },
        "failed": false
    }
}
`



            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Get facts from Cloudvision

cv_facts collect Facts from CloudVision:


	CV version


	List of devices part of CV.
- Active EOS devices
- Inactive EOS devices
- 3rd part devices


	List of configlets


	List of containers


	List of tasks




Full documentation available in [module section](../../modules/cv_facts.rst.md) and a lab is available in the following [repository](https://github.com/arista-netdevops-community/ansible-cvp-avd-toi)

## Playbook example

### Standard playbook

```yaml
—
- name: lab02 - cv_facts lab

hosts: CloudVision
connection: local
gather_facts: no
tasks:

	name: “Gather CVP facts {{inventory_hostname}}”
arista.cvp.cv_facts:
register: cv_facts


```

### Only collect a set of facts

```yaml
tasks:

	name: “Gather CVP facts {{inventory_hostname}}”
arista.cvp.cv_facts:

	facts:
	configlets


```

### Collect running-configuration of devices

```yaml
tasks:

	name: “Gather CVP facts {{inventory_hostname}}”
arista.cvp.cv_facts:

	facts:
	devices

	gather_subset:
	config


```

## Module output

Output is JSON and can be saved or considered as input by other modules

`json
{
    "ansible_facts": {
        "cvp_info": {
            "appVersion": "Foster_Build_03",
            "version": "2018.2.5"
        },
        "configlets": [
            {
                "name": "ANSIBLE_TESTING_CONTAINER",
                "isDefault": "no",
                "config": "alias a57 show version",
                "reconciled": false,
                "netElementCount": 3,
                "editable": true,
                "dateTimeInLongFormat": 1574944821353,
                "isDraft": false,
                "note": "## Managed by Ansible ##",
                "visible": true,
                "containerCount": 2,
                "user": "cvpadmin",
                "key": "configlet_3503_4572477104617871",
                "sslConfig": false,
                "devices": [
                    "veos01",
                    "veos03"
                ],
[...]
`



            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Configure configlets on Cloudvision (v3)

cv_configlet_v3 manage configlets on CloudVision:


	Configlets creation


	Configlets update


	Configlets deletion




To import content from text file, leverage template rendering and then load from file: use lookup() command

## Inputs

Full documentation available in [module section](../../modules/cv_configlet_v3.rst.md) and a lab is available in the following [repository](https://github.com/arista-netdevops-community/ansible-cvp-avd-toi)

## Input variables

```yaml
CVP_CONFIGLETS:

TEAM01-alias: “alias a1 show version”
TEAM01-another-configlet: “alias a2 show version”


```

## Module inputs

### Mandatory Inputs


	configlets: List of configlets to create




### Optional inputs


	state: Keyword to define if we want to create(present) or delete(absent) configlets. Default is set to present




```yaml
—
- name: lab03 - cv_configlet lab

hosts: CloudVision
connection: local
gather_facts: no
vars:

	CVP_CONFIGLETS:
	TEAM01-alias: “alias a1 show version”
TEAM01-another-configlet: “alias a2 show version”

	tasks:
	
	arista.cvp.cv_configlet_v3:
	configlets: “{{CVP_CONFIGLETS}}”
state: present


```

## Module outputs

cv_configlet_v3 outputs:


	List of created configlets


	List of updated configlets


	List of deleted configlets


	List of generated tasks.





	!!! info
	Generated tasks can be consumed directly by cv_tasks_v3.





```yaml
msg:

changed: true
configlets_created:

changed: false
configlets_created_count: 0
configlets_created_list: []
diff: {}
success: false
taskIds: []

	configlets_deleted:
	changed: false
configlets_deleted_count: 0
configlets_deleted_list: []
diff: {}
success: false
taskIds: []

	configlets_updated:
	changed: true
configlets_updated_count: 2
configlets_updated_list:
- 01TRAINING-alias
- 01TRAINING-01
diff:

01TRAINING-alias:
- 0.9565217391304348
- - |-

— CVP

	|-
+++ Ansible

	|-
@@ -1 +1 @@

	-alias a101 show version

	+alias a103 show version

success: true
taskIds:
- ‘460’

failed: false
success: true
taskIds:
- ‘460’


```



            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Configure container on Cloudvision (v3)

__cv_container_v3__ manages containers on CloudVision. It supports:


	Creation and deletion of containers


	Configlets binding to containers




## Inputs

Full documentation available in [module section](../../modules/cv_container_v3.rst.md) and a lab is available in the following [repository](https://github.com/arista-netdevops-community/ansible-cvp-avd-toi).

### Input variables


	Container name


	Parent container name


	Optional list of configlets to attach to container
- The configlets must exist on the CVP server




```yaml
—
CVP_CONTAINERS:

	TEAM01:
	parentContainerName: Tenant

	TEAM01_DC:
	parentContainerName: TEAM01

	TEAM01_LEAFS:
	parentContainerName: TEAM01_DC
configlets:

	GLOBAL-ALIASES


```

### Module inputs

#### Required Inputs


	topology: Container topology




#### Optional inputs


	state: Keyword to define if we want to create (present) or delete (absent) the containers. Default is set to present.


	apply_mode: Define how configlets configured to the containers are managed by ansible:
- loose (default): Configure new configlets to containers and __ignore__ configlet already configured but not listed.
- strict: Configure new configlets to containers and __remove__ configlet already configured but not listed.




```yaml
- name: lab04 - cv_container lab

hosts: CloudVision
connection: local
gather_facts: no
tasks:

	name: “Configure containers on {{inventory_hostname}}”
arista.cvp.cv_container_v3:

topology: “{{CVP_CONTAINERS}}”
state: present
apply_mode: loose


```

## Module output

cv_container_v3 returns the list of:


	attached configlets


	detached configlets


	created containers


	deleted containers


	CV tasks generated





	!!! info
	Generated tasks can be consumed directly by cv_tasks_v3.



	```yaml
	
	msg:
	changed: true
configlets_attached:

changed: true
configlets_attached_count: 0
configlets_attached_list:
- TEAM01_LEAFS:GLOBAL-ALIASES
diff: {}
success: true
taskIds:
- ‘565’

	configlets_detached:
	changed: false
configlets_detached_count: 0
configlets_detached_list: []
diff: {}
success: true
taskIds: []

	container_added:
	changed: false
container_added_count: 0
container_added_list: []
diff: {}
success: false
taskIds: []

	container_deleted:
	changed: false
container_deleted_count: 0
container_deleted_list: []
diff: {}
success: false
taskIds: []

failed: false
success: true
taskIds:
- ‘565’


```



            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Configure devices on Cloudvision

__cv_device_v3__ manage devices on CloudVision:


	Support Configlets attachment


	Support Container move during provisioning


	Support device onboarding (from undefined to any container)




## Inputs

Full documentation available in [module section](../../modules/cv_container_v3.rst.md) and a lab is available in the following [repository](https://github.com/arista-netdevops-community/ansible-cvp-avd-toi)

### Input variables


	Device name.


	Parent container where to move device.


	List of configlets to apply to the device.




```yaml
CVP_DEVICES:

	fqdn: CV-ANSIBLE-EOS01
parentContainerName: ‘ANSIBLE’
Optional fields
configlets:

	‘01TRAINING-01’

systemMacAddress: ‘50:8d:00:e3:78:aa’
serialNumber: 64793E1D3DE2240F547E5964354214A4


```

### Module inputs

#### Required Inputs


	devices: List of devices




#### Optional inputs


	state: Define if module should create`(default) or `delete devices from CV


	apply_mode: Define how configlets configured to the devices are managed by ansible:
- loose (default): Configure new configlets to device and __ignore__ configlet already configured but not listed.
- strict: Configure new configlets to device and __remove__ configlet already configured but not listed.


	search_key: Define key to use to search for devices.
- hostname: Use Hostname to get devices.
- fqdn: Use Hostname + DNS to get devices.
- serialNumber: Use device serial number to get devices.




```yaml
Use default loose apply_mode
- name: “Configure devices on {{inventory_hostname}}”

	arista.cvp.cv_device_v3:
	devices: “{{CVP_DEVICES}}”

register: CVP_DEVICES_RESULTS

Use strict apply_mode
- name: “Configure devices on {{inventory_hostname}}”

	arista.cvp.cv_device_v3:
	devices: “{{CVP_DEVICES}}”
apply_mode: strict

register: CVP_DEVICES_RESULTS

Use serial-number to search for devices.
- name: “Configure devices on {{inventory_hostname}}”

	arista.cvp.cv_device_v3:
	devices: “{{CVP_DEVICES}}”
state: present
apply_mode: loose
search_key: serialNumber

register: CVP_DEVICES_RESULTS


```

## Module output

cv_device returns :


	!!! info
	Generated tasks can be consumed directly by cv_tasks_v3.





```yaml
msg:

changed: true
configlets_attached:

changed: true
configlets_attached_count: 2
configlets_attached_list:
- CV-ANSIBLE-EOS01_configlet_attached - CV-EOS-ANSIBLE01
diff: {}
success: true
taskIds:
- ‘469’

	configlets_detached:
	changed: true
configlets_detached_count: 1
configlets_detached_list:
- CV-ANSIBLE-EOS01_configlet_removed - 01DEMO-alias - 01TRAINING-alias
diff: {}
success: true
taskIds:
- ‘469’

	devices_deployed:
	changed: false
devices_deployed_count: 0
devices_deployed_list: []
diff: {}
success: false
taskIds: []

	devices_moved:
	changed: false
devices_moved_count: 0
devices_moved_list: []
diff: {}
success: false
taskIds: []

failed: false
success: true
taskIds:
- ‘469’


```



            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Execute / Cancel tasks on CloudVision

__cv_task_v3__ manage tasks on CloudVision:


	Execute tasks on CloudVision


	Cancel tasks on Cloudvision




## Inputs

The documentation is available in the [module section](../../modules/cv_task_v3.rst.md).

### Input variables


	list of tasks


	state (executed or cancelled). Default is executed




### Example:

```yaml
- hosts: cv_server

	tasks:
	
	name: Execute task 743
arista.cvp.cv_task_v3:

	tasks:
	
	743

state: executed


```

We can execute tasks generated by other modules by:


	registering the output in a variable


	giving the list of tasks ID to execute with the .taskIds field to the cv_task_v3 module.




### Example of moving 2 devices to a container and execute the tasks:

```yaml
- hosts: cv_server

	vars:
	
	devices:
	
	fqdn: DC1-SPINE1
parentContainerName: mycontainer
configlets:

	DC1-SPINE1-configlet

	fqdn: DC1-SPINE2
parentContainerName: mycontainer
configlets:

	DC1-SPINE2-configlet

	tasks:
	
	name: “Move devices to mycontainer and apply configlet”
arista.cvp.cv_device_v3:

devices: “{{devices}}”
state: present

register: CV_DEVICE_OUTPUT

	name: Execute generated tasks
arista.cvp.cv_task_v3:

tasks: “{{ CV_DEVICE_OUTPUT.taskIds }}”


```

## Module output

```yaml
msg:

	actions_manager:
	actions_manager_count: 2
actions_manager_list:
- task_747
- task_748
changed: true
diff: {}
success: true
taskIds: []

changed: true
failed: false
success: true
taskIds: []


```



            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Development Tips & Tricks

## Overview

Two methods can be used get Ansible up and running quickly with all the requirements to leverage ansible-cvp.
A Python Virtual Environment or Docker container.

The best way to use the development files, is to copy them to the root directory where you have your repositories cloned.
For example, see the file/folder structure below.

`shell
├── git_projects
│   ├── ansible-avd
│   ├── ansible-cvp
│   ├── netdevops-examples
|   ├── <YOUR OWN TESTING REPOSITORY>
│   ├── Makefile
`

## Build local environment

Please refer to [Setup environment page](./setup-environement.md)

Once installed, use dev-start command to bring up all the required containers:


	An [mkdoc](https://hub.docker.com/repository/docker/titom73/mkdocs) for AVD documentation listening on port localhost:8000


	An [mkdoc](https://hub.docker.com/repository/docker/titom73/mkdocs) or CVP documentation listening on port localhost:8001


	An [AVD runner](https://hub.docker.com/repository/docker/avdteam/base) with a pseudo terminal connected to shell for ansible execution




## Docker things

he docker container approach for development can be used to ensure that everybody is using the same development environment while still being flexible enough to use the repo you are making changes in. You can inspect the Dockerfile to see what packages have been installed.
The container will mount the current working directory, so you can work with your local files.

The ansible version is passed in with the docker build command using `ANSIBLE_VERSION` variable.  If the *ANSIBLE* variable is not used the Dockerfile will by default set the ansible version to describe in AVD requirements.

Before you can use a container, you must install [__Docker CE__](https://www.docker.com/products/docker-desktop) and [__docker-compose__](https://docs.docker.com/compose/) on your workstation.

Since docker image is now automatically published on [__docker-hub__](https://hub.docker.com/repository/docker/avdteam/base), a dedicated repository is available on [__Arista Netdevops Community__](https://github.com/arista-netdevops-community/docker-avd-base).

```shell
Start development stack
$ make dev-start
docker-compose -f ansible-cvp/development/docker-compose.yml up -d
Recreating development_ansible_1 … done
Recreating development_webdoc_cvp_1 … done
Recreating development_webdoc_avd_1 … done

List containers started with stack
$ docker-compose -f ansible-cvp/development/docker-compose.yml ps

Name Command State Ports

webdoc_cvp sh -c pip install -r ansib … Up 0.0.0.0:8001->8000/tcp

Get a shell with ansible (if not in shell from previous command)
$ make dev-run
docker-compose -f ansible-cvp/development/docker-compose.yml exec ansible zsh
Agent pid 52
➜ /projects

Test MKDOCS access (outside of development container)
$ curl -s http://127.0.0.1:8001 | head -n 10
<!doctype html>
<html lang=”en” class=”no-js”>

<head>

<meta charset=”utf-8”>
<meta name=”viewport” content=”width=device-width,initial-scale=1”>

Stop development stack
$ make dev-stop
docker-compose -f ansible-cvp/development/docker-compose.yml kill &&

docker-compose -f ansible-cvp/development/docker-compose.yml rm -f

Killing development_ansible_1 … done
Killing development_webdoc_1 … done
Going to remove development_ansible_1, development_webdoc_1
Removing development_ansible_1 … done
Removing development_webdoc_1 … done
```

## Development tools

### Pre-commit hook

[pre-commit](https://github.com/aristanetworks/ansible-avd/blob/devel/.pre-commit-config.yaml) can run standard hooks on every commit to automatically point out issues in code such as missing semicolons, trailing whitespace, and debug statements. By pointing these issues out before code review, this allows a code reviewer to focus on the architecture of a change while not wasting time with trivial style nitpicks.

Repository implements following hooks:


	trailing-whitespace: Fix trailing whitespace. if found, commit is stopped and you must run commit process again.


	end-of-file-fixer: Like trailing-whitespace, this hook fix wrong end of file and stop your commit.


	check-yaml: Check all YAML files ares valid


	check-added-large-files: Check if there is no large file included in repository


	check-merge-conflict: Validate there is no MERGE syntax related to a invalid merge process.


	pylint: Run python linting with settings defined in [pylintrc](https://github.com/aristanetworks/ansible-cvp/blob/devel/pylintrc)


	yamllint: Validate all YAML files using configuration from [yamllintrc](https://github.com/aristanetworks/ansible-cvp/blob/devel/.github/yamllintrc)


	ansible-lint: Validate yaml files are valid against ansible rules.




#### Installation

pre-commit is part of [__development requirememnts__](https://github.com/aristanetworks/ansible-cvp/blob/devel/development/requirements-dev.txt). To install, run pip command in __ansible-avd__ folder:

`shell
$ pip install -r development/requirements-dev.txt
...
`

#### Run pre-commit manually

To run pre-commit manually before your commit, use this command:

```shell
pre-commit run
[WARNING] Unstaged files detected.

[INFO] Stashing unstaged files to /Users/xxx/.cache/pre-commit/patch1590742434.

Trim Trailing Whitespace………………………..(no files to check)Skipped
Fix End of Files……………………………….(no files to check)Skipped
Check Yaml…………………………………….(no files to check)Skipped
Check for added large files……………………..(no files to check)Skipped
Check for merge conflicts……………………….(no files to check)Skipped
Check for Linting error on Python files…………..(no files to check)Skipped
Check for Linting error on YAML files…………….(no files to check)Skipped
Check for ansible-lint errors……………………………………..Passed

[INFO] Restored changes from /Users/xxx/.cache/pre-commit/patch1590742434.
```

Command will automatically detect changed files using git status and run tests according their type.

> This process is also implemented in project CI to ensure code quality and compliance with ansible development process.

### Configure git hook

To automatically run tests when running a commit, configure your repository whit command:

`shell
$ pre-commit install
pre-commit installed at .git/hooks/pre-commit
`

To remove installation, use uninstall option.

### Check 404 links

To validate documentation, you should check for _not found_ links in your local version of the documentation. This test requires to run mkdocs container as explained in [installation documentation](./setup-environement.md).

In a shell, run the following make command. It starts a container in CVP documentation network and leverage [muffet](https://github.com/raviqqe/muffet) tool to check 404 HTTP code:

```shell
$ check-cvp-404
docker run –network container:webdoc_cvp raviqqe/muffet

http://127.0.0.1:8001 -e “.*fonts.gstatic.com.*” -e “.*edit.*” -f –limit-redirections=3 –timeout=60

	http://127.0.0.1:8001/docs/installation/development/
	404 http://127.0.0.1:8001/docs/installation/development/setup-environement2.md

make: *** [check-cvp-404] Error 1
```

> This process is also implemented in project CI to protect documentation against dead links.



            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Requirements

## Arista EOS version


	EOS __4.21.8M__ or later


	Roles validated with eAPI transport -> ansible_connection: httpapi




## Arista Cloudvision

[Cloudvision](https://www.arista.com/en/products/eos/eos-cloudvision) instance must be supported by [Cloudvision ansible collection](https://cvp.avd.sh/)

## Python


	Python __3.6.8__ or later




## Supported Ansible Versions


	ansible __2.9.2__ or later




## Additional Python Libraries required


	[Jinja2](https://pypi.org/project/Jinja2/)


	[netaddr](https://pypi.org/project/netaddr/)


	[requests](https://pypi.org/project/requests/)


	[cvprac](https://github.com/aristanetworks/cvprac)


	[json-schema](https://github.com/Julian/jsonschema)




### Python requirements installation

In a shell, run following command:

`shell
$ pip3 install -r ansible_collections/arista/cvp/requirements.txt
`

`pip
--8<--
requirements.txt
--8<--
`

> Depending of your operating system settings, pip3 might be replaced by pip.

## Ansible runner requirements

A optional docker container is available with all the requirements already installed. To use this container, Docker must be installed on your ansible runner.

To install Docker on your system, you can refer to the following page: [Docker installation step by step](https://docs.docker.com/engine/installation/)

Or if you prefer you can run this oneLiner installation script:

`shell
$ curl -fsSL get.docker.com | sh
`

In addition, docker-compose should be considered to run a stack of containers: https://docs.docker.com/compose/install/



            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Docker & Development environment

Two methods can be used get Ansible up and running quickly with all the requirements to leverage ansible-avd.
A Python Virtual Environment or Docker container.

The best way to use the development files, is to copy them to the root directory where you have your repositories cloned.
For example, see the file/folder structure below.

`shell
├── git_projects
│   ├── ansible-avd
│   ├── ansible-cvp
│   ├── ansible-avd-cloudvision-demo
│   ├── <your-own-test-folder>
│   ├── Makefile
...
`

## Step by step installation process

This process is similar to [ansible-avd collection](https://github.com/aristanetworks/ansible-avd). It means if you use AVD, this step is not required.

```shell
Prepare dedicated folder
$ mkdir git_projects
$ cd git_projects

Clone AVD repositories
$ git clone https://github.com/aristanetworks/ansible-avd.git
$ git clone https://github.com/aristanetworks/ansible-cvp.git
$ git clone https://github.com/arista-netdevops-community/ansible-avd-cloudvision-demo.git

Deploy Makefile with helpful commands
$ cp ansible-avd/development/Makefile ./

Start a pre-configured runner
$ make run
```

## One liner installation

[One liner script](https://github.com/arista-netdevops-community/avd-install/blob/master/install.sh) to setup a development environment. it does following actions:


	Create local folder for development


	Instantiate a local git repository (no remote)


	Clone AVD and CVP collections


	Deploy Makefile




`shell
$ sh -c "$(curl -fsSL https://get.avd.sh)"
`

## Build local environment

### Docker Container for Ansible Testing and Development

The docker container approach for development can be used to ensure that everybody is using the same development environment while still being flexible enough to use the repo you are making changes in. You can inspect the Dockerfile to see what packages have been installed.
The container will mount the current working directory, so you can work with your local files.

The ansible version is passed in with the docker build command using *ANSIBLE* variable.  If the *ANSIBLE* variable is not used the Dockerfile will by default set the ansible version to 2.9.2

Before you can use a container, you must install [__Docker CE__](https://www.docker.com/products/docker-desktop) and [__docker-compose__](https://docs.docker.com/compose/) on your workstation.

#### Development containers


	[Ansible shell](https://hub.docker.com/repository/docker/avdteam/base): provide a built-in container with all AVD and CVP requirements already installed.


	[MKDOCS](https://github.com/titom73/docker-mkdocs) for documentation update: Run MKDOCS in a container and expose port 8000 to test and validate markdown rendering for AVD site.




#### Container commands

In this folder you have a Makefile providing a list of commands to start a development environment:


	run: Start a shell within a container and local folder mounted in /projects


	dev-start: Start a stack of containers based on docker-compose: 1 container for ansible playbooks and 1 container for mkdocs


	dev-stop: Stop compose stack and remove containers.


	dev-run: Connect to ansible container to run your test playbooks.


	dev-reload: Run stop and start.




If you want to test a specific ansible version, you can refer to this [dedicated page](https://github.com/arista-netdevops-community/docker-avd-base/blob/master/docs/run-options.md) to start your own docker image. You can also use following make command: make ANSIBLE_VERSION=2.9.3 run

Since docker image is now automatically published on [__docker-hub__](https://hub.docker.com/repository/docker/avdteam/base), a dedicated repository is available on [__Arista Netdevops Community__](https://github.com/arista-netdevops-community/docker-avd-base).

```shell
Start development stack
$ make dev-start
docker-compose -f ansible-cvp/development/docker-compose.yml up -d
Creating development_webdoc_1 … done
Creating development_ansible_1 … done

List containers started with stack
$ docker-compose -f ansible-avd/development/docker-compose.yml ps

Name Command State Ports

Get a shell with ansible
$ make dev-run
docker-compose -f ansible-cvp/development/docker-compose.yml exec ansible zsh
Agent pid 52
➜ /projects

Test MKDOCS access
$ curl -s http://127.0.0.1:8001 | head -n 10
<!doctype html>
<html lang=”en” class=”no-js”>

<head>

<meta charset=”utf-8”>
<meta name=”viewport” content=”width=device-width,initial-scale=1”>

Stop development stack
$ make dev-stop
docker-compose -f ansible-cvp/development/docker-compose.yml kill &&

docker-compose -f ansible-cvp/development/docker-compose.yml rm -f

Killing development_ansible_1 … done
Killing development_webdoc_1 … done
Going to remove development_ansible_1, development_webdoc_1
Removing development_ansible_1 … done
Removing development_webdoc_1 … done
```



            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Setup Ansible AVD environment

Two methods can be used get Ansible up and running quickly with all the requirements to leverage __ansible-avd__:
A Python Virtual Environment or [Docker container](https://hub.docker.com/repository/docker/avdteam/base).

In both scenario, this document will leverage git approach to create a local environment with collections installed in their respective folders and additional folders for all your content. It means, all examples will be based on the following folder structure:

`shell
├── git_projects
│   ├── ansible-avd
│   ├── ansible-cvp
│   ├── ansible-avd-cloudvision-demo
│   ├── Makefile
`

## Ansible runner requirements

As described in [requirement page](../../docs/installation/requirements.md), your runner should run Python 3.6.8 or Docker engine with [docker-compose](https://docs.docker.com/compose/install/).

## Create local folder structure

To build local folder structure you manually run all the following commands to git clone [ansible-avd](https://github.com/aristanetworks/ansible-avd), [ansible-cvp collection](https://github.com/aristanetworks/ansible-cvp) and a [repository with demo content](https://github.com/arista-netdevops-community/ansible-avd-cloudvision-demo)

In addition to this 3 git clone, you can also deployed a [Makefile](https://github.com/aristanetworks/ansible-avd/blob/devel/development/Makefile) built to provide some shortcut we will discuss in a second stage.

```shell
Prepare dedicated folder
$ mkdir git_projects
$ cd git_projects

Clone AVD repositories
$ git clone https://github.com/aristanetworks/ansible-avd.git
$ git clone https://github.com/aristanetworks/ansible-cvp.git
$ git clone https://github.com/arista-netdevops-community/ansible-avd-cloudvision-demo.git

Deploy Makefile with helpful commands
$ cp ansible-avd/development/Makefile ./

Start a pre-configured runner
$ make run
```

Or you can use a one-liner script available in ansible-avd repository to create this structure for you. This script does following actions:


	Create local folder for development


	Instantiate a local git repository (no remote)


	Clone AVD and CVP collections


	Deploy Makefile




`shell
$ sh -c "$(curl -fsSL https://get.avd.sh)"
`

Because we are cloning ansible collection using git, it is recommended to read documentation about [how to setup ansible to use collection based on git clone](../setup-git/#update-your-ansiblecfg).

## Use docker as AVD shell

In this approach Docker container will be leveraged to provides all the AVD requirements and playbooks and collection will be shared from your localhost to the container.

This approach make the run process easier as all libraries are pre-configured in container and you can continue to use your preferred text editor to edit and build your content.

Considering you have deployed [Makefile](https://github.com/aristanetworks/ansible-avd/blob/devel/development/Makefile) described in previous section, all the outputs will provide native docker command and the Make command.

### AVD environment commands

When using installation script to create your own AVD environment, a [Makefile](https://github.com/aristanetworks/ansible-avd/blob/devel/development/Makefile) is deployed under ./ansible-arista to automate some common commands:

`shell
$ make <your command>
`

#### Commands for docker-compose


	start: Start docker compose stack to develop with AVD and CVP collection (alias: start)


	Deploy an [mkdoc](https://hub.docker.com/repository/docker/titom73/mkdocs) instance to expose AVD documentation with live reload for development purposes.


	Deploy an [mkdoc](https://hub.docker.com/repository/docker/titom73/mkdocs) instance to expose CVP documentation with live reload for development purposes.


	Deploy an [AVD runner](https://hub.docker.com/repository/docker/avdteam/base) with a pseudo terminal connected to shell for ansible execution






	stop: Stop docker compose stack and remove containers (alias: stop)


	run: Run a shell attached to ansible container (alias: shell)


	reload: Stop and Start docker-compose stack




### Commands for docker only


	
	run: Run a [docker container](https://hub.docker.com/repository/docker/avdteam/base) with local folder mounted under /projects. This command supports some option to test development version like:
	
	ANSIBLE_VERSION: Specific version of ansible to install during container startup.


	PIP_REQ: Specific pip requirements file to install during container startup.












#### Command for image management


	update: Get latest version of [AVD runner](https://hub.docker.com/repository/docker/avdteam/base) and [mkdoc](https://hub.docker.com/repository/docker/titom73/mkdocs) servers


	clean: Remove avd image from local repository




### Run AVD shell

We are going to start a [new container](https://hub.docker.com/repository/docker/avdteam/base) running ansible with all the python requirements and mount local folder under /projects. if image is missing, docker will pull out image for you automatically.

`shell
$ docker run --rm -it -v $(PWD)/:/projects avdteam/base:3.6
Unable to find image 'avdteam/base:3.6' locally
3.6: Pulling from avdteam/base
bf5952930446: Already exists
385bb58d08e6: Already exists
f59c6df69726: Already exists
cc14d0cfa632: Already exists
f4eba3bd5be8: Already exists
55c6a5feb373: Already exists
83464a988ea4: Pull complete
9b675b85887d: Pull complete
9cce9aa068f4: Pull complete
a49dbba0fea8: Pull complete
793f98fe2265: Pull complete
Digest: sha256:ead3ef030caa6caeafd6ddbfd31ce935da26b66914096c9543d9a44cca993dfd
Status: Downloaded newer image for avdteam/base:3.6
Agent pid 45
➜  /projects
`

You can use a Make command to run exact same set of actions:

`shell
$ make run
Unable to find image 'avdteam/base:3.6' locally
3.6: Pulling from avdteam/base
bf5952930446: Already exists
385bb58d08e6: Already exists
f59c6df69726: Already exists
cc14d0cfa632: Already exists
f4eba3bd5be8: Already exists
55c6a5feb373: Already exists
83464a988ea4: Pull complete
9b675b85887d: Pull complete
9cce9aa068f4: Pull complete
a49dbba0fea8: Pull complete
793f98fe2265: Pull complete
Digest: sha256:ead3ef030caa6caeafd6ddbfd31ce935da26b66914096c9543d9a44cca993dfd
Status: Downloaded newer image for avdteam/base:3.6
Agent pid 45
➜  /projects
`

Then you can move to your content folder as structure remains the same:

`shell
➜  /projects ls -l
drwxr-xr-x 24 root root  768 Sep  4 15:47 ansible-avd
drwxr-xr-x 24 root root  768 Sep  4 15:47 ansible-cvp
drwxr-xr-x 24 root root  768 Sep  4 15:47 ansible-avd-cloudvision-demo
drwxr-xr-x 24 root root  768 Sep  4 15:47 Makefile
`

You can validate everything is setup correctly:

```shell
➜ /projects python –version
Python 3.6.12

➜ /projects ansible –version
ansible 2.9.6

config file = None
configured module search path = [‘/root/.ansible/plugins/modules’, ‘/usr/share/ansible/plugins/modules’]
ansible python module location = /root/.local/lib/python3.6/site-packages/ansible
executable location = /root/.local/bin/ansible
python version = 3.6.12 (default, Aug 18 2020, 04:28:43) [GCC 8.3.0]


```

To exit container, just use exit

`shell
➜  /projects exit
$
`

### Get latest image of AVD container

Time to time, AVD container is updated to reflect some changes in either python requirements or ansible version. Because your docker engine won’t automatically get latest version, it might be important to update manually this container:

`shell
$ docker pull avdteam/base:3.6
latest: Pulling from avdteam/base
8a29a15cefae: Already exists
95df01e08bce: Downloading [==============================================>    ]  33.55MB/36.35MB
512a8a4d71f7: Downloading [=========================================>         ]   45.1MB/53.85MB
209c1657264b: Download complete
bd6eece0221e: Downloading [===================>                               ]  52.04MB/132.1MB
036c486feecb: Waiting
`

Your environment is now ready and you can start to build your own project leveraging ansible-avd and ansible-cvp collections.

## Using Python 3 Virtual Environment feature

This section describes how to configure python to run ansible and AVD.

As a requirement, we consider python3 as default python interpreter and pip3 as package manager for python3. Some differences can be spotted depending on your own operating system and how they package python.

__Disclaimer__: Not preferred method. if you are not an experienced user, please use docker approach.

In a shell, install virtualenv package:

`shell
# install virtualenv via pip3
$ sudo pip3 install virtualenv
`

Create a dedicated virtual-environment where AVD will installed all required Python pakages:

```shell
$ pwd
/home/user/git_projects

Configure Python virtual environment
$ virtualenv -p python3 .venv
$ source .venv/bin/activate

Install Python requirements
$ pip3 install -r ansible-cvp/ansible_collections/arista/cvp/requirements.txt
…
```



            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Collection installation via ansible-galaxy

## Install from Ansible Galaxy

__arista.cvp__ collection is available on [Ansible Galaxy](https://galaxy.ansible.com/arista/cvp) server and can be automatically installed on your system.

### Latest version

`shell
$ ansible-galaxy collection install arista.avd
`

### Install specific version

`shell
$ ansible-galaxy collection install arista.avd:==1.0.2
`

You can specify multiple range identifiers which are split by ,. You can use the following range identifiers:


	*: Any version, this is the default used when no range specified is set.


	!=: Version is not equal to the one specified.


	==: Version must be the one specified.


	>=: Version is greater than or equal to the one specified.


	>: Version is greater than the one specified.


	<=: Version is less than or equal to the one specified.


	<: Version is less than the one specified.




### Install in specific directory

If you want to install collection in a specific directory part of your project, you can call ansible-galaxy and update your ansible.cfg

```shell
Install collection under ${PWD/collections/}
$ ansible-galaxy collection install arista.cvp -p collections/

Update ansible.cfg file
$ vim ansible.cfg
collections_paths = ${PWD}/collections:~/.ansible/collections:/usr/share/ansible/collections
```

### Upgrade installed AVD collection

You can use -f to force installation of a new version for any installed collection:

`shell
$ ansible-galaxy collection install -f arista.cvp
Process install dependency map
Starting collection install process
Installing 'arista.cvp:1.0.2' to '/root/.ansible/collections/ansible_collections/arista/cvp'
`

> Note: Ansible community is discussing option to implement specific triggers to support upgrade under [issue #65699](https://github.com/ansible/ansible/issues/65699)

## Ansible resources

You can find some additional information about how to use ansible’s collections on the following Ansible pages:


	[Ansible collection user guide](https://docs.ansible.com/ansible/latest/user_guide/collections_using.html)


	[Ansible User guide](https://docs.ansible.com/ansible/latest/user_guide/index.html)






            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Installation using GIT

Using GIT as source of collection in ansible provides an easy way to implement all the changes once they are part of the development branch without waiting for a new tagged version shipped to ansible-galaxy.

## Use Git as source of collection

In this setup, git repository will be used by ansible as collection. It is useful when working on feature development as we can change git branch and test code lively.

### Get repository locally

```shell
Clone repository
$ git clone https://github.com/aristanetworks/ansible-cvp.git

Move to git folder
cd ansible-cvp
```

### Update your ansible.cfg

In your project, update your ansible.cfg file to point __collection_paths__ to your local version of ansible-cvp


	Get full path to your newly cloned AVD repository.




`shell
# Get your current location
$ pwd
/path/to/ansible/avd/collection_repository
`


	Configure your project to use AVD repository as source of collections:




`shell
# Update your ansible.cfg in your playbook project
$ vim ansible.cfg
collections_paths = /path/to/ansible/cvp/collection_repository
`

## Build & install collection from git

In this approach, an ansible collection package is built from current git version and installed locally.

### Clone repository

`shell
$ git clone https://github.com/aristanetworks/ansible-cvp.git
$ cd ansible-avd
`

### Build and install collection

This section should be used only to test collection packaging and to create an offline package to ship on your internal resources if required.

`shell
$ ansible-galaxy collection build --force ansible_collections/arista/avd
$ ansible-galaxy collection install arista-cvp-<VERSION>.tar.gz
`



            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # cv_configlet

Create, Delete, or Update CloudVision Portal Configlets.

<div class=”contents” data-local=”” data-depth=”2”>

</div>

## Synopsis

CloudVison Portal Configlet compares the list of configlets and config
in configlets against cvp-facts then adds, deletes, or updates them as
appropriate. If a configlet is in cvp_facts but not in configlets it
will be deleted. If a configlet is in configlets but not in cvp_facts
it will be created. If a configlet is in both configlets and cvp_facts
it configuration will be compared and updated with the version in
configlets if the two are different.

## Module-specific Options

The following options may be specified for this module:

<table border=1 cellpadding=4>

<tr>
<th class=”head”>parameter</th>
<th class=”head”>type</th>
<th class=”head”>required</th>
<th class=”head”>default</th>
<th class=”head”>choices</th>
<th class=”head”>comments</th>
</tr>

<tr>
<td>configlet_filter<br/><div style=”font-size: small;”></div></td>
<td>list</td>
<td>no</td>
<td>[&#x27;none&#x27;]</td>
<td></td>
<td>


<div>Filter to apply intended mode on a set of configlet. If not used, then module only uses ADD mode. configlet_filter list configlets that can be modified or deleted based on configlets entries.</div>




</td>
</tr>

<tr>
<td>configlets<br/><div style=”font-size: small;”></div></td>
<td>dict</td>
<td>yes</td>
<td></td>
<td></td>
<td>


<div>List of configlets to managed on CVP server.</div>




</td>
</tr>

<tr>
<td>configlets_notes<br/><div style=”font-size: small;”></div></td>
<td>str</td>
<td>no</td>
<td>Managed by Ansible</td>
<td></td>
<td>


<div>Add a note to the configlets.</div>




</td>
</tr>

<tr>
<td>cvp_facts<br/><div style=”font-size: small;”></div></td>
<td>dict</td>
<td>yes</td>
<td></td>
<td></td>
<td>


<div>Facts extracted from CVP servers using cv_facts module</div>




</td>
</tr>

<tr>
<td>filter_mode<br/><div style=”font-size: small;”></div></td>
<td>str</td>
<td>no</td>
<td>loose</td>
<td><ul><li>loose</li><li>strict</li></ul></td>
<td>


<div>If loose, a match is when a configlet matches a substring of a configlet defined in the filter</div>
<div>If strict, a match is when a configlet exactly matches a configlet defined in the filter</div>




</td>
</tr>

<tr>
<td>state<br/><div style=”font-size: small;”></div></td>
<td>str</td>
<td>no</td>
<td>present</td>
<td><ul><li>present</li><li>absent</li></ul></td>
<td>


<div>If absent, configlets will be removed from CVP if they are not bound to either a container or a device.</div>
<div>If present, configlets will be created or updated.</div>




</td>
</tr>

</table>
</br>

## Examples:


—
- name: Test cv_configlet_v2


hosts: cvp
connection: local
gather_facts: no
vars:



	configlet_list:
	Test_Configlet: “! This is a Very First Testing Configletn!”
Test_DYNAMIC_Configlet: “{{ lookup(‘file’, ‘templates/configlet_’+inventory_hostname+’.txt’) }}”









	tasks:
	
	name: ‘Collecting facts from CVP {{inventory_hostname}}.’
tags:



	always







cv_facts:
register: cvp_facts



	name: ‘Create configlets on CVP {{inventory_hostname}}.’
tags:



	provision








	cv_configlet:
	cvp_facts: “{{cvp_facts.ansible_facts}}”
configlets: “{{configlet_list}}”
configlets_notes: “Configlet managed by Ansible”
configlet_filter: [“New”, “Test”,”base-chk”,”base-firewall”]





register: cvp_configlet















### Author



	EMEA AS Team (@aristanetworks)









            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # cv_configlet_v3

Create, Delete, or Update CloudVision Portal Configlets.

Module added in version 3.0.0

<div class=”contents” data-local=”” data-depth=”2”>

</div>

## Synopsis

CloudVison Portal Configlet compares the list of configlets and config
in configlets against cvp-facts then adds, deletes, or updates them as
appropriate. If a configlet is in cvp_facts but not in configlets it
will be deleted. If a configlet is in configlets but not in cvp_facts
it will be created. If a configlet is in both configlets and cvp_facts
it configuration will be compared and updated with the version in
configlets if the two are different.

## Module-specific Options

The following options may be specified for this module:

<table border=1 cellpadding=4>

<tr>
<th class=”head”>parameter</th>
<th class=”head”>type</th>
<th class=”head”>required</th>
<th class=”head”>default</th>
<th class=”head”>choices</th>
<th class=”head”>comments</th>
</tr>

<tr>
<td>configlets<br/><div style=”font-size: small;”></div></td>
<td>dict</td>
<td>yes</td>
<td></td>
<td></td>
<td>


<div>List of configlets to managed on CVP server.</div>




</td>
</tr>

<tr>
<td>configlets_notes<br/><div style=”font-size: small;”></div></td>
<td>str</td>
<td>no</td>
<td>Managed by Ansible</td>
<td></td>
<td>


<div>Add a note to the configlets.</div>




</td>
</tr>

<tr>
<td>state<br/><div style=”font-size: small;”></div></td>
<td>str</td>
<td>no</td>
<td>present</td>
<td><ul><li>present</li><li>absent</li></ul></td>
<td>


<div>If absent, configlets will be removed from CVP if they are not bound</div>
<div>to either a container or a device.</div>
<div>If present, configlets will be created or updated.</div>




</td>
</tr>

</table>
</br>

## Examples:


—
- name: Test cv_configlet_v3


hosts: cvp
connection: local
gather_facts: no
vars:



	configlet_list:
	Test_Configlet: “! This is a Very First Testing Configletn!”
Test_DYNAMIC_Configlet: “{{ lookup(‘file’, ‘templates/configlet_’+inventory_hostname+’.txt’) }}”









	tasks:
	
	name: ‘Create configlets on CVP {{inventory_hostname}}.’
tags:



	provision








	cv_configlet:
	configlets: “{{configlet_list}}”
configlets_notes: “Configlet managed by Ansible”





register: cvp_configlet















### Author



	EMEA AS Team (@aristanetworks)









            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # cv_container

Manage Provisioning topology.

<div class=”contents” data-local=”” data-depth=”2”>

</div>

## Synopsis

CloudVision Portal Configlet configuration requires a dictionary of
containers with their parent, to create and delete containers on CVP
side. Returns number of created and/or deleted containers

## Module-specific Options

The following options may be specified for this module:

<table border=1 cellpadding=4>

<tr>
<th class=”head”>parameter</th>
<th class=”head”>type</th>
<th class=”head”>required</th>
<th class=”head”>default</th>
<th class=”head”>choices</th>
<th class=”head”>comments</th>
</tr>

<tr>
<td>configlet_filter<br/><div style=”font-size: small;”></div></td>
<td>list</td>
<td>no</td>
<td>[&#x27;none&#x27;]</td>
<td></td>
<td>


<div>Filter to apply intended set of configlet on containers. If not used, then module only uses ADD mode. configlet_filter list configlets that can be modified or deleted based on configlets entries.</div>




</td>
</tr>

<tr>
<td>cvp_facts<br/><div style=”font-size: small;”></div></td>
<td>dict</td>
<td>yes</td>
<td></td>
<td></td>
<td>


<div>Facts from CVP collected by cv_facts module</div>




</td>
</tr>

<tr>
<td>mode<br/><div style=”font-size: small;”></div></td>
<td>str</td>
<td>no</td>
<td>merge</td>
<td><ul><li>merge</li><li>override</li><li>delete</li></ul></td>
<td>


<div>Allow to save topology or not</div>




</td>
</tr>

<tr>
<td>topology<br/><div style=”font-size: small;”></div></td>
<td>dict</td>
<td>yes</td>
<td></td>
<td></td>
<td>


<div>Yaml dictionary to describe intended containers</div>




</td>
</tr>

</table>
</br>

## Examples:



	name: Create container topology on CVP
hosts: cvp
connection: local
gather_facts: no
vars:


verbose: False
containers:



	Fabric:
	parent_container: Tenant



	Spines:
	parent_container: Fabric
configlets:



	container_configlet








	images:
	
	4.22.0F






	devices:
	
	veos01



















	tasks:
	
	name: “Gather CVP facts {{inventory_hostname}}”
cv_facts:
register: cvp_facts


	name: “Build Container topology on {{inventory_hostname}}”
cv_container:


cvp_facts: “{{cvp_facts.ansible_facts}}”
topology: “{{containers}}”
mode: merge




register: CVP_CONTAINERS_RESULT
















### Author



	EMEA AS Team (@aristanetworks)









            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # cv_container_v3

Manage Provisioning topology.

Module added in version 3.0.0

<div class=”contents” data-local=”” data-depth=”2”>

</div>

## Synopsis

CloudVision Portal Configlet configuration requires a dictionary of
containers with their parent, to create and delete containers on CVP
side. Module also supports to configure configlets at container level.
Returns number of created and/or deleted containers

## Module-specific Options

The following options may be specified for this module:

<table border=1 cellpadding=4>

<tr>
<th class=”head”>parameter</th>
<th class=”head”>type</th>
<th class=”head”>required</th>
<th class=”head”>default</th>
<th class=”head”>choices</th>
<th class=”head”>comments</th>
</tr>

<tr>
<td>apply_mode<br/><div style=”font-size: small;”></div></td>
<td>str</td>
<td>no</td>
<td>loose</td>
<td><ul><li>loose</li><li>strict</li></ul></td>
<td>


<div>Set how configlets are attached/detached on container. If set to strict all configlets not listed in your vars are detached.</div>




</td>
</tr>

<tr>
<td>state<br/><div style=”font-size: small;”></div></td>
<td>str</td>
<td>no</td>
<td>present</td>
<td><ul><li>present</li><li>absent</li></ul></td>
<td>


<div>Set if ansible should build or remove devices on CLoudvision</div>




</td>
</tr>

<tr>
<td>topology<br/><div style=”font-size: small;”></div></td>
<td>dict</td>
<td>yes</td>
<td></td>
<td></td>
<td>


<div>Yaml dictionary to describe intended containers</div>




</td>
</tr>

</table>
</br>

## Examples:


# task in loose mode (default)
- name: Create container topology on CVP


hosts: cvp
connection: local
gather_facts: no
vars:


verbose: False
containers:



	Fabric:
	parentContainerName: Tenant



	Spines:
	parentContainerName: Fabric
configlets:



	container_configlet


















	tasks:
	
	name: ‘running cv_container’
arista.cvp.cv_container_v3:


topology: “{{CVP_CONTAINERS}}”















# task in strict mode
- name: Create container topology on CVP


hosts: cvp
connection: local
gather_facts: no
vars:


verbose: False
containers:



	Fabric:
	parentContainerName: Tenant



	Spines:
	parentContainerName: Fabric
configlets:



	container_configlet


















	tasks:
	
	name: ‘running cv_container’
arista.cvp.cv_container_v3:


topology: “{{CVP_CONTAINERS}}”
apply_mode: strict


















### Author



	EMEA AS Team (@aristanetworks)









            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # cv_device

Provision, Reset, or Update CloudVision Portal Devices.

<div class=”contents” data-local=”” data-depth=”2”>

</div>

## Synopsis

CloudVison Portal Device compares the list of Devices in devices against
cvp-facts then adds, resets, or updates them as appropriate. If a device
is in cvp_facts but not in devices it will be reset to factory defaults
in ZTP mode If a device is in devices but not in cvp_facts it will be
provisioned If a device is in both devices and cvp_facts its configlets
and imageBundles will be compared and updated with the version in
devices if the two are different. Warning - reset means devices will be
erased and will run full ZTP process. Use this function with caution !

## Module-specific Options

The following options may be specified for this module:

<table border=1 cellpadding=4>

<tr>
<th class=”head”>parameter</th>
<th class=”head”>type</th>
<th class=”head”>required</th>
<th class=”head”>default</th>
<th class=”head”>choices</th>
<th class=”head”>comments</th>
</tr>

<tr>
<td>configlet_mode<br/><div style=”font-size: small;”></div></td>
<td>str</td>
<td>no</td>
<td>override</td>
<td><ul><li>override</li><li>merge</li><li>delete</li></ul></td>
<td>


<div>If override, Add listed configlets and remove all unlisted ones.</div>
<div>If merge, Add listed configlets to device and do not touch already configured configlets.</div>




</td>
</tr>

<tr>
<td>cvp_facts<br/><div style=”font-size: small;”></div></td>
<td>dict</td>
<td>yes</td>
<td></td>
<td></td>
<td>


<div>Facts from CVP collected by cv_facts module</div>




</td>
</tr>

<tr>
<td>device_filter<br/><div style=”font-size: small;”></div></td>
<td>list</td>
<td>no</td>
<td>[&#x27;all&#x27;]</td>
<td></td>
<td>


<div>Filter to apply intended mode on a set of configlet. If not used, then module only uses ADD mode. device_filter list devices that can be modified or deleted based on configlets entries.</div>




</td>
</tr>

<tr>
<td>devices<br/><div style=”font-size: small;”></div></td>
<td>dict</td>
<td>yes</td>
<td></td>
<td></td>
<td>


<div>Yaml dictionary to describe intended devices configuration from CVP stand point.</div>




</td>
</tr>

<tr>
<td>state<br/><div style=”font-size: small;”></div></td>
<td>str</td>
<td>no</td>
<td>present</td>
<td><ul><li>present</li><li>absent</li></ul></td>
<td>


<div>If absent, devices will be removed from CVP and moved back to undefined.</div>
<div>If present, devices will be configured or updated.</div>




</td>
</tr>

</table>
</br>

## Examples:


—
- name: Test cv_device


hosts: cvp
connection: local
gather_facts: no
collections:



	arista.cvp








	vars:
	
	configlet_list:
	cv_device_test01: “alias a{{ 999 | random }} show version”
cv_device_test02: “alias a{{ 999 | random }} show version”





# Device inventory for provision activity: bind configlet
devices_inventory:



	veos01:
	name: veos01
configlets:



	cv_device_test01


	SYS_TelemetryBuilderV2_172.23.0.2_1


	veos01-basic-configuration


	SYS_TelemetryBuilderV2
















	tasks:
	
# Collect CVP Facts as init process





	name: “Gather CVP facts from {{inventory_hostname}}”
cv_facts:
register: cvp_facts
tags:



	always









	name: “Configure devices on {{inventory_hostname}}”
tags:



	provision








	cv_device:
	devices: “{{devices_inventory}}”
cvp_facts: ‘{{cvp_facts.ansible_facts}}’
device_filter: [‘veos’]





register: cvp_device



	name: “Add configlet to device on {{inventory_hostname}}”
tags:



	provision








	cv_device:
	devices: “{{devices_inventory}}”
cvp_facts: ‘{{cvp_facts.ansible_facts}}’
configlet_mode: merge
device_filter: [‘veos’]





register: cvp_device















### Author



	EMEA AS Team (@aristanetworks)









            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # cv_device_v3

Manage Provisioning topology.

Module added in version 3.0.0

<div class=”contents” data-local=”” data-depth=”2”>

</div>

## Synopsis

CloudVision Portal Configlet configuration requires a dictionary of
containers with their parent, to create and delete containers on CVP
side. Returns number of created and/or deleted containers

## Module-specific Options

The following options may be specified for this module:

<table border=1 cellpadding=4>

<tr>
<th class=”head”>parameter</th>
<th class=”head”>type</th>
<th class=”head”>required</th>
<th class=”head”>default</th>
<th class=”head”>choices</th>
<th class=”head”>comments</th>
</tr>

<tr>
<td>apply_mode<br/><div style=”font-size: small;”></div></td>
<td>str</td>
<td>no</td>
<td>loose</td>
<td><ul><li>loose</li><li>strict</li></ul></td>
<td>


<div>Set how configlets are attached/detached on device. If set to strict all configlets not listed in your vars are detached.</div>




</td>
</tr>

<tr>
<td>devices<br/><div style=”font-size: small;”></div></td>
<td>list</td>
<td>yes</td>
<td></td>
<td></td>
<td>


<div>List of devices with their container and configlets information</div>




</td>
</tr>

<tr>
<td>search_key<br/><div style=”font-size: small;”></div></td>
<td>str</td>
<td>no</td>
<td>hostname</td>
<td><ul><li>fqdn</li><li>hostname</li><li>serialNumber</li></ul></td>
<td>


<div>Key name to use to look for device in Cloudvision.</div>




</td>
</tr>

<tr>
<td>state<br/><div style=”font-size: small;”></div></td>
<td>str</td>
<td>no</td>
<td>present</td>
<td><ul><li>present</li><li>absent</li></ul></td>
<td>


<div>Set if ansible should build or remove devices on CLoudvision</div>




</td>
</tr>

</table>
</br>

## Examples:


# task in loose mode using fqdn (default)
—
- name: Device Management in Cloudvision


hosts: cv_server
connection: local
gather_facts: false
collections:



	arista.cvp








	vars:
	
	CVP_DEVICES:
	
	fqdn: CV-ANSIBLE-EOS01
parentContainerName: ANSIBLE
configlets:



	‘CV-EOS-ANSIBLE01’

















	tasks:
	
	name: “Configure devices on {{inventory_hostname}}”
arista.cvp.cv_device_v3:


devices: ‘{{CVP_DEVICES}}’
state: present
search_key: fqdn















# task in loose mode using serial
—
- name: Device Management in Cloudvision


hosts: cv_server
connection: local
gather_facts: false
collections:



	arista.cvp








	vars:
	
	CVP_DEVICES:
	
	serialNumber: xxxxxxxxxxxx
parentContainerName: ANSIBLE
configlets:



	‘CV-EOS-ANSIBLE01’

















	tasks:
	
	name: “Configure devices on {{inventory_hostname}}”
arista.cvp.cv_device_v3:


devices: ‘{{CVP_DEVICES}}’
state: present
search_key: serialNumber















# task in strict mode
—
- name: Device Management in Cloudvision


hosts: cv_server
connection: local
gather_facts: false
collections:



	arista.cvp








	vars:
	
	CVP_DEVICES:
	
	fqdn: CV-ANSIBLE-EOS01
parentContainerName: ANSIBLE
configlets:



	‘CV-EOS-ANSIBLE01’

















	tasks:
	
	name: “Configure devices on {{inventory_hostname}}”
arista.cvp.cv_device_v3:


devices: ‘{{CVP_DEVICES}}’
state: present
apply_mode: strict


















### Author



	EMEA AS Team (@aristanetworks)









            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # cv_facts

Collect facts from CloudVision Portal.

<div class=”contents” data-local=”” data-depth=”2”>

</div>

## Synopsis

Returns list of devices, configlets, containers and images

## Module-specific Options

The following options may be specified for this module:

<table border=1 cellpadding=4>

<tr>
<th class=”head”>parameter</th>
<th class=”head”>type</th>
<th class=”head”>required</th>
<th class=”head”>default</th>
<th class=”head”>choices</th>
<th class=”head”>comments</th>
</tr>

<tr>
<td>facts<br/><div style=”font-size: small;”></div></td>
<td>list</td>
<td>no</td>
<td>[&#x27;all&#x27;]</td>
<td><ul><li>all</li><li>devices</li><li>containers</li><li>configlets</li><li>tasks</li></ul></td>
<td>


<div>List of facts to retrieve from CVP.</div>
<div>By default, cv_facts returns facts for devices/configlets/containers/tasks</div>
<div>Using this parameter allows user to limit scope to a subset of information.</div>




</td>
</tr>

<tr>
<td>gather_subset<br/><div style=”font-size: small;”></div></td>
<td>list</td>
<td>no</td>
<td>[&#x27;default&#x27;]</td>
<td><ul><li>default</li><li>config</li><li>tasks_pending</li><li>tasks_failed</li><li>tasks_all</li></ul></td>
<td>


<div>When supplied, this argument will restrict the facts collected</div>
<div>to a given subset.  Possible values for this argument include</div>
<div>all, hardware, config, and interfaces.  Can specify a list of</div>
<div>values to include a larger subset.  Values can also be used</div>
<div>with an initial <code><a class=”reference internal” href=”#!”><span class=”std std-ref”>!</span></a></code> to specify that a specific subset should</div>
<div>not be collected.</div>




</td>
</tr>

</table>
</br>

## Examples:



	—
	
	tasks:
	
	name: ‘#01 - Collect devices facts from {{inventory_hostname}}’
cv_facts:



	facts:
	devices








register: FACTS_DEVICES



	name: ‘#02 - Collect devices facts (with config) from {{inventory_hostname}}’
cv_facts:



	gather_subset:
	config



	facts:
	devices








register: FACTS_DEVICES_CONFIG



	name: ‘#03 - Collect confilgets facts from {{inventory_hostname}}’
cv_facts:



	facts:
	configlets








register: FACTS_CONFIGLETS



	name: ‘#04 - Collect containers facts from {{inventory_hostname}}’
cv_facts:



	facts:
	containers








register: FACTS_CONTAINERS



	name: ‘#10 - Collect ALL facts from {{inventory_hostname}}’
cv_facts:
register: FACTS















### Author



	EMEA AS Team (@aristanetworks)









            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # cv_task

Execute or Cancel CVP Tasks.

<div class=”contents” data-local=”” data-depth=”2”>

</div>

## Synopsis

CloudVison Portal Task module

## Module-specific Options

The following options may be specified for this module:

<table border=1 cellpadding=4>

<tr>
<th class=”head”>parameter</th>
<th class=”head”>type</th>
<th class=”head”>required</th>
<th class=”head”>default</th>
<th class=”head”>choices</th>
<th class=”head”>comments</th>
</tr>

<tr>
<td>state<br/><div style=”font-size: small;”></div></td>
<td>str</td>
<td>no</td>
<td>executed</td>
<td><ul><li>executed</li><li>cancelled</li></ul></td>
<td>


<div>action to carry out on the task executed - execute tasks cancelled - cancel tasks</div>




</td>
</tr>

<tr>
<td>tasks<br/><div style=”font-size: small;”></div></td>
<td>list</td>
<td>yes</td>
<td></td>
<td></td>
<td>


<div>CVP taskIDs to act on</div>




</td>
</tr>

<tr>
<td>wait<br/><div style=”font-size: small;”></div></td>
<td>int</td>
<td>no</td>
<td>0</td>
<td></td>
<td>


<div>Time to wait for tasks to transition to &#x27;Completed&#x27;</div>




</td>
</tr>

</table>
</br>

## Examples:


—
- name: Execute all tasks registered in cvp_configlets variable



	arista.cvp.cv_task:
	tasks: “{{ cvp_configlets.data.tasks }}”









	name: Cancel a list of pending tasks
arista.cvp.cv_task:


tasks: “{{ cvp_configlets.data.tasks }}”
state: cancelled








# Execute all pending tasks and wait for completion for 60 seconds
# In order to get a list of all pending tasks, execute cv_facts first
- name: Update cvp facts


arista.cvp.cv_facts:





	name: Execute all pending tasks and wait for completion for 60 seconds
arista.cvp.cv_task:


port: ‘{{cvp_port}}’
tasks: “{{ tasks }}”
wait: 60











### Author



	EMEA AS Team (@aristanetworks)









            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # cv_task_v3

Execute or Cancel CVP Tasks.

Module added in version 3.0.0

<div class=”contents” data-local=”” data-depth=”2”>

</div>

## Synopsis

CloudVison Portal Task module to action pending tasks on CLoudvision

## Module-specific Options

The following options may be specified for this module:

<table border=1 cellpadding=4>

<tr>
<th class=”head”>parameter</th>
<th class=”head”>type</th>
<th class=”head”>required</th>
<th class=”head”>default</th>
<th class=”head”>choices</th>
<th class=”head”>comments</th>
</tr>

<tr>
<td>state<br/><div style=”font-size: small;”></div></td>
<td>str</td>
<td>no</td>
<td>executed</td>
<td><ul><li>executed</li><li>cancelled</li></ul></td>
<td>


<div>action to carry out on the task executed - execute tasks cancelled - cancel tasks</div>




</td>
</tr>

<tr>
<td>tasks<br/><div style=”font-size: small;”></div></td>
<td>list</td>
<td>yes</td>
<td></td>
<td></td>
<td>


<div>CVP taskIDs to act on</div>




</td>
</tr>

</table>
</br>

## Examples:


—
- name: Execute all tasks registered in cvp_configlets variable



	arista.cvp.cv_task:
	tasks: “{{ cvp_configlets.taskIds }}”









	name: Cancel a list of pending tasks
arista.cvp.cv_task:


tasks: [‘666’, ‘667’]
state: cancelled











### Author



	EMEA AS Team (@aristanetworks)









            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Release Notes For Ansible CVP 1.x

## Release v1.1.2

__Supported CloudVision version__


	2018.2.5


	2019.1


	2020.1




> Download Cloudvision appliance: [Arista website](https://www.arista.com/en/support/software-download)

__Enhancements__


	Update documentation about supported CVP versions (#195)


	Report better error message when device not reachable (#205)


	Add role to support configlets synchronisation between cloudvision servers (#196)


	Allow dhcp_configuration role to only generate dhcpd.conf file (#206)


	Publish collection documentation on [github.io](https://cvp.avd.sh/)




__Fixed issues__


	Fix an issue where cv_device was not able to move device and update device in same execution. (#199)


	Fix an issue where cv_configlet did not release list of configlets (#211)


	Fix an issue where CV returns empty tasks for cv_device update with no change (#217)


	Fix an issue where cv_configlet did not update configlet when filter was not set (#215)




__Contributors__


	@noredistribution


	@jrecchia1029


	@Hugh-Adams


	@guillaumeVilar




## Release v1.1.1

__Supported CloudVision version__


	2018.2.5


	2019.1


	2020.1




> Download Cloudvision appliance: [Arista website](https://www.arista.com/en/support/software-download)

__Fixed issues__


	Fix failure when cv_container tried to attached first configlet to a container: #190




__Enhancements__


	Ansible linting improvement


	Update documentation to reflect supported version of Cloudvision.





	!!! info
	For detailed information please see the [release tag](https://github.com/aristanetworks/ansible-cvp/releases/tag/v1.1.1)





## Release v1.1.0

__Supported CloudVision version__


	2018.2.5


	2019.x


	2020.1 (#129)




> Download Cloudvision appliance: [Arista website](https://www.arista.com/en/support/software-download)

__Enhancement__


	Optimize cv_facts execution: #147


	cv_configlet now support deletion mode to remove a list of configlets: #168


	cv_device now supports mode to apply configlets (merge/override/delete): #126


	cv_configlet returns diff computed by Cloudvision: #121


	cv_configlet now supports custom comment to configure on CV side: #186


	Support DHCP package installation for centos and ubuntu platform #172 (cherry-picked from releases/v1.0.x)




__Fixed issues__


	Fix an issue related to container topology deletion in a relative path #175


	Fix an issue related to authentication fallback mechanism #183 / #185


	Fix an error collecting facts if a configlet or a configlet builder contains errorCode string: #178




__Others__


	Support generic logging in module for better bug analysis: #124


	Ansible lint over DCHP configuration role.




__Contributors__


	@noredistribution


	@Hugh-Adams


	@b-abadie


	@ksator





	!!! info
	For detailed information please see the [release tag](https://github.com/aristanetworks/ansible-cvp/releases/tag/v1.1.0)





## Release 1.0.6

__Supported CloudVision version__


	2018.2.5


	2019.1.x




> Download Cloudvision appliance: [Arista website](https://www.arista.com/en/support/software-download)

__Enhancement__


	Update DHCP role to support DHCP configuration outside of CVP: #151




__Fixed issues__


	When a container has a new configlet, it is applied to other containers: #165 / #170




For detailed information please see the [release tag](https://github.com/aristanetworks/ansible-cvp/releases/tag/v1.0.6)

## Release 1.0.5

__Supported CloudVision versions:__


	2018.2.5


	2019.1.x




> Download Cloudvision appliance: [Arista website](https://www.arista.com/en/support/software-download)

__Enhancements__


	New Ansible role to configure ZTP service on Cloudvision: [arista.cvp.ztp_configuration](../../roles/dhcp_configuration/README.md)


	Implement new logging mechanism across all arista.cvp modules (Issue: #124 / PR: #146)


	Enable Continuous Integration using Github Actions (#148)




__Fixed issues:__


	Fix an issue where cv_configlet do not detect small changes in configlet. (#135)


	Fix a an issue where containers were not correctly match in cv_container (#142)


	Fix an issue where package dependencies were broken in Dockerfile


	Update documentation to remove deprecated options




__Others__


	Remove Dockefile for python2.7.


	Update Makefile to only support Dockerfile with Python3.


	Remove old testing files.





	!!! info
	For detailed information please see the [release tag](https://github.com/aristanetworks/ansible-cvp/releases/tag/v1.0.5)





## Release 1.0.4

__Supported CloudVision version:__


	2018.2.5


	2019.1.0


	2019.1.1


	2019.1.2




__Enhancement:__


	Add Configlet diff in cv_configlet: Issue #120





	!!! info
	For detailed information please see the [release tag](https://github.com/aristanetworks/ansible-cvp/releases/tag/v1.0.4)





## Release 1.0.3a

__Supported CloudVision version:__


	2018.2.5


	2019.1.0


	2019.1.1


	2019.1.2




__Enhancement:__


	Support Python 3.7 and 3.8 (Issue #105)


	Ship a development container (Issue #107)


	Optimize docker image creation


	Support custom name for the root container in cv_container (#113)




__Fixed issues:__


	Fix an issue where cv_container did not return correct list of attached configlets (Issue #108)


	Upgrade SSL lib in docker images (#112)


	Remove save_topology from cv_container (#116)


	Fix an issue where cv_facts does not create correct tasks list (#118)


	Fix Galaxy Version from 1.0.3




For detailed information please see the [release tag](https://github.com/aristanetworks/ansible-cvp/releases/tag/v1.0.3a)

## Release 1.0.3

__Supported CloudVision version:__


	2018.2.5


	2019.1.0


	2019.1.1


	2019.1.2




__Enhancement:__


	Support Python 3.7 and 3.8 (Issue #105)


	Ship a development container (Issue #107)


	Optimize docker image creation


	Support custom name for the root container in cv_container (#113)




__Fixed issues:__


	Fix an issue where cv_container did not return correct list of attached configlets (Issue #108)


	Upgrade SSL lib in docker images (#112)


	Remove save_topology from cv_container (#116)


	Fix an issue where cv_facts does not create correct tasks list (#118)





	!!! info
	For detailed information please see the [release tag](https://github.com/aristanetworks/ansible-cvp/releases/tag/v1.0.3)





## Release 1.0.2

__Supported CloudVision version:__


	2018.2.5


	2019.1.0


	2019.1.1




__Enhancement:__


	Use CloudVision JSON in facts (#30)


	Refactor cv_facts (#95)


	Implement subset and facts in cv_facts


	Implement mode in cv_container


	Implement state=absent in cv_configlet and cv_device


	Integration with [Arista Validated Design](https://github.com/aristanetworks/ansible-avd) project




__Fixed issues:__


	Tasks not captures by cv_task from cv_device (#79)


	Remove duplicate taskIDs (#82)


	Fix some code quality


	Update documentation





	!!! info
	For detailed information please see the [release tag](https://github.com/aristanetworks/ansible-cvp/releases/tag/v1.0.2)





## Release 1.0.1

__Ansible Collection update__
- Improve documentation (#70)
- Validate code with ansible-test for galaxy integration (#64)
- Fix an issue where inactive devices could break cv_facts (#61)
- Implement mode mechanism in cv_container (#58)
- Fix issue where tasks appeared multiple times causing cv_task error (#82)
- cv_task not catching tasks returned by cv_device (#79)

__Repository Update__
- Create Dockerfile for both python __`2.7`__ and __`3.x`__ (#56)
- Create Makefile to reduce manual overhead (#34)
- Update collection path to allow local development (#73)
- Create dev unit testing with Makefile


	!!! info
	For detailed information please see the [release tag](https://github.com/aristanetworks/ansible-cvp/releases/tag/v1.0.1)





## Release 1.0.0

First public version of the collection.

__New Features:__


	Support for CVP __2018.2.x__ and CVP __2019.1.x__


	Implement cv_facts module for information gathering


	Implement cv_container and cv_device to manage provisioning topology


	Implement cv_configlet to manage configlet content on CloudVision platform


	Use Ansible collection approach




__Documentation__


	Modules documentation: [docs/](https://github.com/aristanetworks/ansible-cvp/tree/releases/v1.0.x/docs) folder


	Example playbooks available in [examples/](https://github.com/aristanetworks/ansible-cvp/tree/releases/v1.0.x/examples) folder





	!!! info
	For detailed information please see the [release tag](https://github.com/aristanetworks/ansible-cvp/releases/tag/v1.0.0)







            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Release Notes For Ansible CVP 2.x


	!!! info
	Documentation for 2.1.x branch [available here](https://cvp.avd.sh/en/releases-v2.1.x/)





## Release 2.1.2

Documentation for 2.1.x branch [available here](https://cvp.avd.sh/en/releases-v2.1.x/)

### Supported CloudVision version:


	On premise version higher than 2018.2.5


	Cloudvision as a Service




### Fixed issues


	Fix(cv_container): remove non-existing key as output in schema validation (#326)


	Fix(json_schema): Enable whitespace support in path name (#318)


	Fix(logger): Implement UUID in default log file (#304)


	Add missing expected Python header for Ansible (#294)




### Enhancements


	Feature - strict configlet match (#301)




## Release 2.1.1

Documentation for 2.1.x branch [available here](https://cvp.avd.sh/en/releases-v2.1.x/)

### Supported CloudVision version:


	2018.2.5


	2019.1


	2020.1


	2020.2


	Cloudvision as a Service




> Download Cloudvision appliance: [Arista website](https://www.arista.com/en/support/software-download)

### Fixed issues


	Remove unecessary become flag in dhcp_configuration role (#286)


	Fix typo in function cv_update_configlets_on_device of tools_cv.py (#284)


	Fix cv_configlet issue when state is absent (#261)


	Fix issues in cv_configlet error handling (#255)




### Enhancements


	Add Input validation with JSON schema (#264)


	Implement check to validate configlets exist on a CV when using cv_device (#262)


	Add support for SSL Cert validation (#254)


	Add ansible check mode support (#240)




### Documentation updates


	Fix documentation rendering (#242)


	Fix nested list rendering issue (#241)





	!!! info
	For detailed information please see the [release tag](https://github.com/aristanetworks/ansible-cvp/releases/tag/v2.1.1)





## Release 2.1.0

Documentation for 2.1.x branch [available here](https://cvp.avd.sh/en/releases-v2.1.x/)

__Supported CloudVision version:__


	2018.2.5


	2019.1


	2020.1


	2020.2


	Cloudvision as a Service




> Download Cloudvision appliance: [Arista website](https://www.arista.com/en/support/software-download)

__Fixed issues__

N/A

__Enhancements__


	PR: Add CVaaS support (#235)




__Documentation updates__


	PR: Add HOW-TO section (#237)





	!!! info
	For detailed information please see the [release tag](https://github.com/aristanetworks/ansible-cvp/releases/tag/v2.1.0)





## Release 2.0.0

Documentation for 2.0.x branch [available here](https://cvp.avd.sh/en/releases-v2.0.x/)

__Supported CloudVision version:__


	2018.2.5


	2019.1


	2020.1


	2020.2




> Download Cloudvision appliance: [Arista website](https://www.arista.com/en/support/software-download)

__Enhancements__


	Move collection backend to [cvprac module](https://github.com/aristanetworks/cvprac) to manage all Cloudvision communications.



	Please update python requirements by installing cvprac in version 1.0.4


	AVD container has been updated accordingly. Please pull out the new version on your laptop.









	Install cvprac




`shell
pip install cvprac==1.0.4
`


	Update Docker image




`shell
docker pull avdteam/base:3.6
`

__Contributors__


	@noredistribution


	@Hugh-Adams


	@carlbuchmann


	@mharista





	!!! info
	For detailed information please see the [release tag](https://github.com/aristanetworks/ansible-cvp/releases/tag/v2.0.0)







            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Release Notes For Ansible CVP 3.x


	!!! info
	Documentation for 3.x.x branch [available here](https://cvp.avd.sh/en/latest/)





## Supported CloudVision version


	On premise version higher than 2018.2.5


	Cloudvision as a Service




## Release 3.2.0

### Enhancements



	[cv_device_v3] Add serialNumber support to manage devices. ([#374](https://github.com/aristanetworks/ansible-avd/issues/374))







### Bug fixes



	[cv_device_v3] Correct format ID in str raising an error ([#399](https://github.com/aristanetworks/ansible-avd/issues/399))


	[cv_device_v3] Update format string ([#396](https://github.com/aristanetworks/ansible-avd/issues/396))







## Release 3.1.2

### Enhancements


	Apply python linting warning in import (#385)


	Remove Molecule from collection build process (#386)




## Release 3.1.1

### Enhancements


	Bump: Sync requirement files for ansible version (#382)




## Release 3.1.0

### Requirements update

[cvprac](https://github.com/aristanetworks/cvprac) must be upgraded to version 1.0.7 or higher.

`bash
$ pip install --upgrade cvprac>=1.0.7
`

### Fixed issues


	Fix(cv_configlet_v3): Propagate configlets_notes option to update & create (#372)


	Fix(dhcp_configuration): Update files permissions (#360)




### Enhancements


	Cv_configlet_v3: update configlet note when the config content is not… (#376)


	Performance improvements in configlet tools compare functions (#369)


	Add support for reordering of configlet in cv_device_v3 (#367)


	Implement default search on Hostname field (#366)




## Release 3.0.0

### New Features


	New module to manage devices: [cv_device_v3](../../how-to/v3/cv_configlet_v3/)




```yaml
- name: “Configure devices on {{inventory_hostname}}”

	arista.cvp.cv_device_v3:
	devices: “{{CVP_DEVICES}}”

register: CVP_DEVICES_RESULTS


```


	New module to manage containers: [cv_container_v3](../../how-to/v3/cv_container_v3/)





	```yaml
	
	name: “Configure containers on {{inventory_hostname}}”

	arista.cvp.cv_container:
	topology: “{{CVP_CONTAINERS}}”


```


	New module to manage configlets: [cv_configlet_v3](../../how-to/v3/cv_configlet_v3/)




```yaml
- name: Configure configlets

	arista.cvp.cv_configlet_v3:
	configlets: “{{CVP_CONFIGLETS}}”


```


	New module to manage tasks: cv_task_v3




With this new version of modules, cv_facts is not required anymore and execution should be significally higher than v1 version.


	!!! warning
	Previous version of modules remain available in the collection and can be used in parallel of all these v3 modules.





### Enhancements


	Add apply_mode feature to cv_container_v3 (#338)


	Use multiple version of JSON schema to support v1 and v3 in parallel (#325)


	Add support for apply_mode function (#322)


	cv_configlet_v3: add delete configlet failure message (#316)






            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # CVP Unit test

This section provides a list of Ansible Cloudvision scenario executed during Continuous Integration to validate CVP integration.

## Ansible molecule

Molecule provides support for testing with multiple instances, operating systems and distributions, virtualization providers, test frameworks and testing scenarios. Molecule encourages an approach that results in consistently developed roles that are well-written, easily understood and maintained.

## Scenario

Current molecule implementation provides following scenario:


	dhcp_configuration




## Manual execution

To manually run molecule testing, follow commands:

```shell
Install development requirements
$ pip install -r development/requirements-dev.txt

Move to AVD collection
$ ansible-avd/ansible_collections/arista/cvp

Run molecule for a given test
$ molecule test -s <scenario-name>

Run molecule for all test
$ molecule test –all
```

## Continuous Integration

These scenario are all included in github actions and executed on push and pull_request when a file under roles and/or molecule is updated.

```yaml
name: Ansible Molecule
on:

push:
pull_request:

	paths:
	
	‘ansible_collections/arista/cvp/roles/**’

	‘ansible_collections/arista/cvp/molecules/**’

	‘requirements.txt’

	jobs:
	
	molecule:
	runs-on: ubuntu-latest
env:

PY_COLORS: 1 # allows molecule colors to be passed to GitHub Actions
ANSIBLE_FORCE_COLOR: 1 # allows ansible colors to be passed to GitHub Actions

	strategy:
	fail-fast: true
matrix:

	avd_scenario:
	
	dhcp_configuration

	steps:
	
	name: Checkout repository
uses: actions/checkout@v2

	name: Run molecule action
uses: inetsix/molecule-collection-actions@master
with:

molecule_parentdir: ‘ansible_collections/arista/cvp’
molecule_command: ‘test’
molecule_args: ‘-s ${{ matrix.avd_scenario }}’
pip_file: ‘requirements.txt’


```



            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # Collections Plugins Directory

arista.cvp collection provides a set of plugins to configure Arista EOS devices with a CloudVision Platform server.

## List of available modules


	__arista.cvp.cv_facts__ - Collect CVP facts from server like list of containers, devices, configlet and tasks.


	__arista.cvp.cv_configlet__:  Manage configlet configured on CVP.


	__arista.cvp.cv_container__:  Manage container topology and attach configlet and devices to containers.


	__arista.cvp.cv_device__: Manage devices configured on CVP


	__arista.cvp.cv_task__:  Run tasks created on CVP.






            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # configlet_sync role

Ansible role to synchronize configlets between 2 instances of [Cloudvision](https://www.arista.com/en/products/eos/eos-cloudvision) servers.

This role synchronize a designated set of CVP Configlets across multiple CVP instances. This ability to synchronize Configlets provides an efficient way of ensuring organizational policies and security requirements can be quickly deployed across an entire Arista estate in a consistent automated manner. The aim will be to deploy and synchronize a set of configlets that could be updated from any instance of CVP or via an Ansible PlayBook. This provides the most flexible method of managing the configlets without imposing any requirements to exclusively use either CVP or Ansible for updating them.

![](files/ansible-cvp-sync.png)

This role is implementation of example describe on [EOS Central blog](https://eos.arista.com/synchronising-cloudvision-portal-configlets-with-ansible/) by @Hugh-Adams.

## Requirements

No specific requirements to use this role.

## Tested Platforms

Any version of Cloudvision supported by current arista.cvp collection.

## Role Variables

### Mandatory variables

`yaml
---
action: < * action to run with the role: init|sync|pull|push >
`


	__`init`__: Create initial local folder to save role outputs.


	__`pull`__: Connects to each of the CVP instances, locates the configlets with {{configlet_filter}} in their name and updates local shared configlet data (config, last time changed, associated containers, associated devices) for each CVP instance.


	__`pull`__: Connects to each of the CVP instances and updates the shared configlets on each one using the information provided by pull action.


	__`sync`__: Execute both __`pull`__ and __`push`__ actions.




#### Optional variables

#### Role variables

`yaml
configlet_filter:       < PREFIX of configlet to look for synchronization, Default is shared >
`

#### Local folders outputs

```yaml
—
cvpsync_data: < Local folder where configlets_sync save data. Default is generated_vars/ >

common_configlets_dir: < Folder for common configlets. Default is {{cvpsync_data}}/common_configlets/ >
cvp_servers_dir: < Folder for common configlets. Default is {{cvpsync_data}}/common_configlets/ >
```


	__`common_configlets_dir`__: contains details of the configlets that are to be synchronized across the CVP instances.


	__`cvp_servers_dir`__:  contains details of which configlets are to be deployed to the CVP servers. This directory can be used by other PlayBooks to deploy configlets and provision devices.




## Dependencies

No dependency required for this role.

## Example Playbook

### Playbook

Below is a basic playbook running arista.cvp.dhcp_configuration role to only get shared configlets with generic string in the name.

```yaml
—
- name: Shared Configlets across CVP clusters

hosts: cvp_sync
serial: true
gather_facts: no
collections:

	arista.cvp

	tasks:
	
	name: ‘Init Configlets Sync structure’
import_role:

name: configlets_sync

	vars:
	action: init

	name: ‘Sync Shared Configlets’
import_role:

name: configlets_sync

	vars:
	action: pull
configlet_filter: ‘generic’


```

Example playbook to to synchronize shared configlets with generic string in the name:

```yaml
—
- name: Shared Configlets across CVP clusters

hosts: cvp_sync
serial: true
gather_facts: no
collections:

	arista.cvp

	tasks:
	
	name: ‘Init Configlets Sync structure’
import_role:

name: configlets_sync

	vars:
	configlet_filter: ‘generic’
action: sync


```

### Inventory

{{inventory_name}} for Cloudvision instances can be changed to match your own environement. Only group name cvp_sync must be the same in inventory and playbook.

```yaml
—
all:

	children:
	
	cvp_sync:
	
	hosts:
	
	cv_server1:
	ansible_host: 1.1.1.1.1
ansible_user: ansible
ansible_password: ansible

	cv_server2:
	ansible_host: 8.8.8.8
ansible_user: arista
ansible_password: arista

	vars:
	ansible_httpapi_host: ‘{{ ansible_host }}’
ansible_connection: httpapi
ansible_httpapi_use_ssl: true
ansible_httpapi_validate_certs: false
ansible_network_os: eos
ansible_httpapi_port: 443
Optional - Configuration to get Virtual Env information
ansible_python_interpreter: $(which python)


```

## License

Project is published under [Apache 2.0 License](../../../../../LICENSE)



            

          

      

      

    

  

  
    
    

    <no title>
    

    
 
  

    
      
          
            
  # dhcp_configuration role

Ansible role to provision and configure Zero Touch Provisioning on a CloudVision server. Role will do the following:


	Install DHCP package


	Activate DHCPd service on CloudVision.


	Create /etc/dhcp/dhcpd.conf file with relevant information.


	Reload dhcpd service to apply changes.




## Requirements

No specific requirements to use this role.

## Tested Platforms

Below is a list of platforms where DHCPd configuration has been tested:


	Centos 7 / 8


	Ubuntu 18.02


	Arista Cloudvision 2019 and onward (for lab purpose)




This role should work on any platform running [ISC-DHCP server](https://www.isc.org/dhcp/).

> If role is applied to Cloudvision server, DHCP configuration may be erased during upgrade process. Use it at your own risk in a production environment.

## Role Variables

```yaml
mode: < offline/online - Select if role configure a DHCP server or just generate dhcpd.conf file locally. (default online) >
Offline only variables
output_dir: < path where to save dhcpd.conf file when using offline mode.>

Online only variables
dhcp_packages: [] < List of packages to install as part of DHCP service. (default is [‘dhcp’])>
dhcp_packages_state: < Flag to install or remove DHCP package. (default is present)>
dhcp_config_dir: < Folder where dhcp config is saved. (default is /etc/dhcp/)>
dhcp_config: < Configuration file for DHCP service. (default is {{ dhcp_config_dir }}/dhcpd.conf)>
dhcp_service: < Name of the service running on the system for DHCP. (default is dhcpd)>

Data for template engine. For both offline and online mode
ztp:

	default: < Section with default value for hosts configuration >
	registration: < * Default URL to get Script to register to CV or initial configuration >
gateway: < Gateway to use by default if not set per device >
nameservers: < List of default NS to use on a per host basis >
use_system_mac: < true | false Configure DHCP for system-mac-address provided in show version (default false) >

	general: < Section to define subnets parameters >
	
	subnets:
	
	network: < * Subnet where DHCP will listen for request >
netmask: < * Netmask of given subnet >
gateway: < Gateway to configure for given subnet >
nameservers: < List of name-servers to configure for given subnet >
start: < First IP available in the pool >
end: < Last IP available in the pool >
lease_time: < Maximum lease time before device loose IP. Renewal is max/2 >

	clients: < List of clients on a mac-address basis >
	
	name: < * Hostname to provide when device do a DHCP request >
mac: < * Mac address of the host. Mac address value MUST be protected by either single or dual quotes >
ip4: < * IP Address of the host >
registration: < Registration URL to use for the host. If not set, default value will be applied >
gateway: < Gateway to use for the host. If not set, default value will be applied >
nameservers: < List of NS to use for the host. If not set, default value will be applied >


```

Variables with * are mandatory, others are optional and might be skipped if not needed in your setup.

## Dependencies

No dependency required for this role.

## Example Playbook

### Generate DHCPD configuration to deploy on a DHCP server

```yaml
—
- name: Configure DHCP service on CloudVision

hosts: dhcp_server
gather_facts: false
collection:

	arista.cvp

	vars:
	
	ztp:
	
	default:
	registration: ‘http://10.255.0.1/ztp/bootstrap’
gateway: 10.255.0.3
nameservers:

	‘10.255.0.3’

	general:
	
	subnets:
	
	network: 10.255.0.0
netmask: 255.255.255.0
gateway: 10.255.0.3
nameservers:

	‘10.255.0.3’

start: 10.255.0.200
end: 10.255.0.250
lease_time: 300

	clients:
	
	name: DC1-SPINE1
mac: ‘0c:1d:c0:1d:62:01’
ip4: 10.255.0.11

	name: DC1-SPINE2
mac: ‘0c:1d